Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (11): 2215-2222    DOI: 10.3785/j.issn.1008-973X.2019.11.020
Energy Engineering     
Human kinetic energy harvesting technology based on magnetic levitation structure
Fei FEI1(),Shen-yu LIU1,Chang-cheng WU1,De-hua YANG1,Sheng-li ZHOU2
1. Institute of Automation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
2. School of Astronautics, Northwestern Polytechnical University, Xi’an 710072, China
Download: HTML     PDF(1419KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An electromagnetic energy harvesting device based on magnetic levitation structure was designed, and the harvesting device can be installed on wrist, elbow and ankle to harvest human kinetic energy generated during human motions. Several kinds of energy harvesting technologies for vibration energy were summarized. The acceleration and the angular velocity of human joints in motion were measured with inertial sensors. The work principle of nonlinear energy harvesting of magnetic levitation structure was analyzed theoretically. The distribution of magnetic field and the variation of magnetic line of force around the structure during vibration were simulated with finite element tools. The resonant frequencies and the range of output voltage were verified by vibration test platform. When the user wears the device for testing, the output voltage and the power increase with the speed of movement. At the speed of 8 km/h, the maximum instantaneous power values captured by wrist, elbow and ankle were 0.60 mW, 0.30 mW and 0.58 mW, respectively. Experimental results show that the electromagnetic energy harvesting device based on magnetic levitation structure can effectively scavenge human kinetic energy and provide electric power for low power consumption devices such as wearable sensors.



Key wordsmagnetic levitation      human kinetic energy      energy harvesting      finite element simulation      wearable device     
Received: 08 September 2018      Published: 21 November 2019
CLC:  TP 212  
Cite this article:

Fei FEI,Shen-yu LIU,Chang-cheng WU,De-hua YANG,Sheng-li ZHOU. Human kinetic energy harvesting technology based on magnetic levitation structure. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2215-2222.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.11.020     OR     http://www.zjujournals.com/eng/Y2019/V53/I11/2215


基于磁悬浮结构的人体动能采集技术

设计基于磁悬浮结构的电磁能量采集装置,该装置可佩戴于使用者的腕部、肘部和脚踝处,收集人体运动过程中产生的动能. 概述现有的可用于振动能量采集的多种能量采集技术,利用惯性传感器对实验者运动时的关节加速度及角速度进行测量,对磁悬浮结构的非线性能量采集工作原理进行理论分析. 运用有限元工具对振动时结构周边的磁场分布和磁力线变化进行仿真研究,并通过振动实验平台验证装置的共振频率和电压输出范围. 当使用者佩戴该装置进行测试时,装置输出的电压及功率随运动速度的增加而增加,在8 km/h的运动条件下,腕部、肘部和踝部所能俘获的最大瞬时功率分别为0.60、0.30、0.58 mW. 实验结果表明,基于磁悬浮互斥结构的电磁能量采集装置能有效采集人体动能,并为可穿戴传感器等低功耗设备供能.


关键词: 磁悬浮,  人体动能,  能量采集,  有限元仿真,  可穿戴设备 
类型 优点 缺点
电磁式 无需驱动电源 磁体与线圈尺寸大
输出电流大 难以与MEMS技术集成
体积小、结构简单 输出电压低
静电式 输出电压高 需要外部电源
收集频率广 电容气隙小、实现困难
易与MEMS技术集成 低电流、高输出阻抗
压电式 机电转换效率高 高输出阻抗
输出电压高 存在非线性效应
易与MEMS技术集成 压电材料较脆、易疲劳
Tab.1 Advantages and disadvantages of three kinds of vibration energy harvesting technologies
行为 Ek/mW Ekc/mW
呼气 1.00×103 0.40×103
血压 0.93×103 0.37×103
呼吸胸腔变化 0.83×103 0.42×103
手指运动 6.9~19.0 0.76~2.10
上肢运动 60.00×103 0.33×103
Tab.2 Generated and recycled energy of human daily activities
Fig.1 Installation diagram of inertial motion sensors
Fig.2 Acceleration and angular velocity of human body parts with different motion speeds
Fig.3 Swing frequency with different motion speeds
Fig.4 Structure diagram of electromagnetic energy harvester
参数 数值/mm 参数 数值/mm
l1 60.0 w1 34.0
l2 38.0 w2 21.7
l3 25.8 w3 18.0
Tab.3 Parameters of electromagnetic energy harvester
Fig.5 Equivalent model diagram of magnetic levitation structure
Fig.6 Half cross section view of simulation model
Fig.7 Half cross section view of magnetic flux density/magnetic induction line with excitation frequency of 6 Hz
Fig.8 Three-dimensional diagram of magnetic field distribution in initial position
Fig.9 Electromagnetic energy harvester and excitation platform
参数 数值
线圈匝数N/匝 1 500
导线直径d/mm 0.2
Lp/m 113.1
Rc 67
磁铁型号 NdFeB-N38
固定磁铁尺寸D0×H0/mm Φ20×1
固定磁铁质量m0/g 3.99
D×H/mm Φ15×2
移动磁铁质量m/g 4.07
G/mm 4.00
装置总质量M/g 72.52
Tab.4 System parameters of electromagnetic energy harvester
Fig.10 Variation curves of open-circuit peak to peak voltage and acceleration of excitation platform with different frequencies
Fig.11 Variation curves of output power with different load resistance values
Fig.12 Comparison of theoretical, simulation and experimental results of open-circuit voltage with excitation frequency of 6 Hz
Fig.13 Installation of energy harvester
Fig.14 Variation curves of open-circuit peak to peak voltage with different movement speeds
Fig.15 Output voltage waveforms of wrist, elbow and ankle at speed of 8 km/h
[1]   PANTELOPOULOS A, BOURBAKIS N G A survey on wearable sensor-based systems for health monitoring and prognosis[J]. IEEE Transactions on Systems Man and Cybernetics, 2009, 40 (1): 1- 12
[2]   VIEIRA M A M, COELHO C N, SILVA D C D, et al. Survey on wireless sensor network devices [C]// 2003 IEEE Conference on Emerging Technologies and Factory Automation. Lisbon: IEEE, 2003: 537-544.
[3]   COLOMER-FARRARONS J, MIRIBEL-CATALA P, SAIZ-VELA A, et al A multiharvested self-powered system in a low-voltage low-power technology[J]. IEEE Transactions on Industrial Electronics, 2011, 58 (9): 4250- 4263
doi: 10.1109/TIE.2010.2095395
[4]   曹自平, 王楚, 袁明, 等 环境能量采集技术的研究现状及发展趋势[J]. 南京邮电大学学报: 自然科学版, 2016, 36 (4): 1- 10
CAO Zi-ping, WANG Chu, YUAN Ming, et al Survey on ambient energy harvesting techniques and its development tendency[J]. Journal of Nanjing University of Posts and Telecommunications: Natural Science, 2016, 36 (4): 1- 10
[5]   曹文英, 谷秋瑾, 刘雨婷, 等 人体能量收集的研究现状[J]. 微纳电子技术, 2016, 53 (2): 78- 86
CAO Wen-ying, GU Qiu-jin, LIU Yu-ting, et al Research status of human energy harvesting[J]. Micronanoelectronic Technology, 2016, 53 (2): 78- 86
[6]   YUEN S C L, LEE J M H, LUK M H M, et al. AA size micro power conversion cell for wireless applications [C]// 2004 IEEE Conference on Intelligent Control and Automation. Hangzhou: IEEE, 2009: 5629-5634.
[7]   SARI I, BALKAN T, KULAH H An electromagnetic micro power generator for wideband environmental vibrations[J]. Sensors and Actuators A: Physical, 2008, 145/146: 405- 413
doi: 10.1016/j.sna.2007.11.021
[8]   WANG Z, HU J, HAN J, et al A novel high-performance energy harvester based on nonlinear resonance for scavenging power-frequency magnetic energy[J]. IEEE Transactions on Industrial Electronics, 2017, 64 (8): 6556- 6564
doi: 10.1109/TIE.2017.2682040
[9]   TORRES E O, RINCON-MORA G A Electrostatic energy-harvesting and battery-charging CMOS system prototype[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2009, 56 (9): 1938- 1948
doi: 10.1109/TCSI.2008.2011578
[10]   SUZUKI Y, MIKI D, EDAMOTO M, et al A MEMS electret generator with electrostatic levitation for vibration-driven energy-harvesting applications[J]. Journal of Micromechanics and Microengineering, 2010, 20 (10): 104002
doi: 10.1088/0960-1317/20/10/104002
[11]   王二萍, 高景霞, 张金平, 等 压电俘能器研究现状及新发展[J]. 电子元件与材料, 2015, (9): 18- 24
WANG Er-ping, GAO Jing-xia, ZHANG Jin-ping, et al Current situation and new trend of piezoelectric energy harvesters[J]. Electronic Components and Materials, 2015, (9): 18- 24
[12]   PASQUALE G D, SOMA A. Energy harvesting from human motion with piezo fibers for the body monitoring by MEMS sensors [C]// 2013 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS. Barcelona: IEEE, 2013: 1-6.
[13]   SNEHALIKA, BHASKER M U. Piezoelectric energy harvesting from shoes of soldier [C]// 2016 IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems. Delhi: IEEE, 2016: 1-5.
[14]   SONG H C, KUMAR P, MAURYA D, et al Ultra-low resonant piezoelectric MEMS energy harvester with high power density[J]. Journal of Microelectromechanical Systems, 2017, 26 (6): 1226- 1234
doi: 10.1109/JMEMS.2017.2728821
[15]   刘成龙, 孟爱华, 陈文艺, 等 振动能量收集技术的研究现状与发展趋势[J]. 装备制造技术, 2013, (12): 43- 47
LIU Cheng-long, MENG Ai-hua, CHENG Wen-yi, et al Research and development of vibration energy harvesting technology[J]. Equipment Manufacturing Technology, 2013, (12): 43- 47
doi: 10.3969/j.issn.1672-545X.2013.12.015
[16]   SUE C Y, TSAI N C Human powered MEMS-based energy harvest devices[J]. Applied Energy, 2012, 93 (5): 390- 403
[17]   STARNER T Human-powered wearable computing[J]. IBM Systems Journal, 1996, 35 (3/4): 618- 629
[18]   BERDY D F, VALENTINO D J, PEROULIS D Kinetic energy harvesting from human walking and running using a magnetic levitation energy harvester[J]. Sensors and Actuators A: Physical, 2015, 222: 262- 271
doi: 10.1016/j.sna.2014.12.006
[19]   WANG W, CAO J, ZHANG N, et al Magnetic-spring based energy harvesting from human motions: design, modeling and experiments[J]. Energy Conversion and Management, 2017, 132: 189- 197
doi: 10.1016/j.enconman.2016.11.026
[20]   MANN B P, SIMS N D Energy harvesting from the nonlinear oscillations of magnetic levitation[J]. Journal of Sound and Vibration, 2009, 319 (1/2): 515- 530
[21]   PRIYA S, INMAN D J. Energy harvesting technologies [M]. New York: Springer, 2009: 3-9.
[22]   SHAN X B, GUAN S W, LIU Z S, et al A new energy harvester using a piezoelectric and suspension electromagnetic mechanism[J]. Journal of Zhejiang University: Science A, 2013, 14 (12): 890- 897
doi: 10.1631/jzus.A1300210
[23]   FOISAL A R M, HOMG C, CHUNG G S Multi-frequency electromagnetic energy harvester using a magnetic spring cantilever[J]. Sensors and Actuators A: Physical, 2012, 182 (15): 106- 113
[1] Jun WEI,Yong-xiao DU,Man-shu LIANG. Influence of fatigue stiffness degradation for beam structure on modal frequency[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 899-909.
[2] HU Li-sha, WANG Su-zhen, CHEN Yi-qiang, GAO Chen-long, HU Chun-yu, JIANG Xin-long, CHEN Zhen-yu, GAO Xing-yu. Fall detection algorithms based on wearable device: a review[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(9): 1717-1728.
[3] ZHANG Cheng-qian, ZHAO Peng, XIE Jun, XIA Neng, FU Jian-zhong. Density measurement by magnetic levitation for diamagnetic high-density materials[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(4): 613-618.
[4] XIA Neng, XIE Jun, ZHANG Cheng-qian, ZHAO Peng, FU Jian-zhong. Magnetic levitation simulation and density measurement for diamagnetic materials[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(3): 473-478.
[5] DAI Mei-ling, YANG Fu-jun, HE Xiao-yuan, DAI Xiang-jun. Compressive mechanical properties of new type of hollow sphere structure[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(11): 2043-2049.
[6] LIAO Zi-nan, SHAO Xu-dong, QIAO Qiu-heng, CAO Jun-hui, LIU Xiang-ning. Static test and finite element simulation analysis of transverse bending of steel-ultra-high performance concrete composite slabs[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1954-1963.
[7] FAN Hai-gui, CHEN Zhi-ping, XU Feng, TANG Xiao-yu, SU Wen-qiang. Floating-roof tanks' distortion analysis based on measured settlement[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(9): 1824-1833.
[8] DENG Zhi-qiang, WANG Xiang, ZHENG Zheng, LI Chun-lai, LI Huan, SAN Hai-sheng. Design and experiment of wideband piezoelectric vibration energy harvester[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(11): 2287-2291.
[9] ZHAO Qing juan, XU Jie, SHAN De bin, GUO Bin. Numerical simulation and experimental study based on electromagnetic forming of array of micro channel[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(1): 198-203.
[10] YANG Hong, YANG Dai-heng, ZHAO Yang. Three-dimensional finite element simulation of
static granular material pressure for steel silos
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(8): 1423-1429.
[11] TUN Gong-Bing, GU Zhi-Xin, LIU Gang, BI Yun-Bei, DONG Hui-Ti. Finite element modeling of Ti6Al4V alloy high speed cutting[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(5): 982-987.