Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (7): 1265-1273    DOI: 10.3785/j.issn.1008-973X.2019.07.004
Mechanical and Energy     
Spool stuck mechanism of ball-type rotary direct drive pressure servo valve
Liang LU1(),Fei-yan XIA1,Yao-bao YIN1,*(),Jia-yang YUAN1,Sheng-rong GUO2
1. College of Mechanical Engineering, Tongji University, Shanghai 200092, China
2. Aviation Key Laboratory of Science and Technology on Aero Electromechanical System Integration, Nanjing Mechatronic and Hydraulic Engineering Research Centre, Nanjing 210061, China
Download: HTML     PDF(1792KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the sticking problem of ball-type rotary direct drive pressure servo valve (BRDDPSV), the global motion function of the spool was established, including the radial force model of inclined spool based on gap flow theory and the static-sliding friction between the spool shoulder and sleeve wall based on Coulomb friction theory. Sticking problem was reasonably reappeared by theoretical analysis curve: spool rotates and tilts counterclockwise by eccentric force, then the right shoulder of spool contact sleeve wall, initial static friction leads to spool sticking, gradually rising current overcomes friction to form spool movement overshoot. The valve core is pulled back to form a repetitive positive drive spool block in order to ensure the approximate proportion of current command and control pressure. The threshold condition of the sticking problem was obtained based on the principle of non-contact between spool shoulder and sleeve wall. Results show that increasing the initial radius gap between spool and bush or decreasing the initial eccentricity of ball from spool axis can increase the output pressure threshold of non-stuck. For the actual demand of 21 MPa system pressure and 0-8 MPa output pressure, the initial radius clearance and the initial eccentricity were adjusted to 5.1 μm and 0.2 mm respectively. The optimal solution of global non-sticking can be obtained by maintaining the original performance.



Key wordsrotary ball direct drive      pressure servo valve      spool stuck      anti-stuck parameter optimization     
Received: 23 August 2018      Published: 25 June 2019
CLC:  TH 137  
Corresponding Authors: Yao-bao YIN     E-mail: luliang829@tongji.edu.cn;y-yin@tongji.edu.cn
Cite this article:

Liang LU,Fei-yan XIA,Yao-bao YIN,Jia-yang YUAN,Sheng-rong GUO. Spool stuck mechanism of ball-type rotary direct drive pressure servo valve. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1265-1273.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.07.004     OR     http://www.zjujournals.com/eng/Y2019/V53/I7/1265


小球式旋转直驱压力伺服阀卡滞机理研究

针对小球式旋转直驱压力伺服阀(BRDDPSV)静态测试卡滞问题,建立阀芯运动全局函数,包括基于缝隙流理论建立倾斜阀芯径向力模型,基于Coulomb摩擦理论建立阀肩触壁静摩擦-滑动摩擦模型. 理论解析曲线合理复现了静态测试卡滞问题:偏心驱动下阀芯逆时针旋转倾斜,右侧阀肩触壁,初始静摩擦导致阀芯卡滞,逐渐提升的电流水平克服摩擦形成阀芯运动超调. 为了保证电流指令与控制压力的近似比例特性,阀芯回拉复位,形成重复的正向驱动阀芯卡滞. 基于阀肩不触壁原则,获得阀芯是否卡滞阈值条件. 研究结果表明:增大阀芯与阀套初始半径间隙或减小小球偏离阀芯轴线的初始偏心量,均可以提高阀芯不卡滞的输出压力阈值;对于21 MPa系统压力及0~8 MPa输出压力的实际需求,在不改变其他参数的情况下,将初始半径间隙和初始偏心距分别调整为5.1 μm和0.2 mm,可以在维持原有性能的基础上获得阀芯运动全局不卡滞的最优解.


关键词: 小球式旋转直驱,  压力伺服阀,  阀芯卡滞,  防卡滞参数优化 
Fig.1 Structure and working principle of BRDDPSV
参数 参数值
电机电阻Rc 23.3
阀芯质量mv/g 5
阀芯总长度l/mm 24
阀芯直径Dv/mm 6
阀肩长度L/mm 6.4
小球偏离阀芯轴线距离h0/mm 0.5
阀芯与阀套间的初始半径间隙δ/μm 3
滑阀预开口量U/mm 0.1
负载容腔容积V/mL 10
工作介质 15#液压油
介质温度θ/°C 25±0.5
Tab.1 Parameters of BRDDPSV structure and working medium
Fig.2 Test bench for static characteristic test of pressure servo valve
Fig.3 Experimental curve of static test
Fig.4 System block diagram of BRDDPSV
Fig.5 Schematic diagram of force acting on spool
Fig.6 Position relationship between valve shoulder and sleeve on spool leaning condition
Fig.7 Differential pressure slit-flow produced radial force vs. spool radial displacement and leaning angle
Fig.8 Sketch of friction when valve shoulder touching sleeve wall
Fig.9 Control pressure comparison between theoretical computation and experimental test
Fig.10 Theoretical curve of spool horizontal velocity
Fig.11 Theoretical curve of spool radial displacement
Fig.12 Pressure thresholds comparison between theory and experiment
Fig.13 Section partition for stuck or not on different initial radius gap conditions
Fig.14 Section partition for stuck or not on different initial eccentricity conditions
Fig.15 Structural parameters matching for no-stuck(ps=21 MPa,pL0=8 MPa)
[1]   MOOG W C. Electrohydraulic servo mechanism: US2625136 [P]. 1953-01-13.
[2]   HOWARD C T. Flow control servo valve: US 2790427 [P]. 1957-04-30.
[3]   ATCHLEY R D. Valve: US, US3017864 [P]. 1962-01-23.
[4]   MASKREY R H, THAYER W J A brief history of electrohydraulic servomechanisms[J]. Journal of Dynamic Systems Measurement and Control, 1978, 100 (2): 110
doi: 10.1115/1.3426352
[5]   BRADLEY D A. Mechatronics: electronics in products and processes [M]. New York: Routledge, 2018.
[6]   EL-ARABY M, EL-KAFRAWY A, FAHMY A Dynamic performance of a nonlinear non-dimensional two stage electrohydraulic servo valve model[J]. International Journal of Mechanics and Materials in Design, 2011, 7 (2): 99- 110
doi: 10.1007/s10999-011-9150-x
[7]   SHARMA S K, JR C E S, GSCHWENDER L J, et al Stuck servo valves in aircraft hydraulic systems[J]. Lubrication Engineering, 1999, 55 (7): 27- 32
[8]   YIN Y B, YUAN J Y, GUO S R Numerical study of solid particle erosion in hydraulic spool valves[J]. Wear, 2017, 392-393: 174- 189
doi: 10.1016/j.wear.2017.09.021
[9]   訚耀保. 极端环境下的电液伺服控制理论及应用技术[M]. 上海: 上海科学技术出版社, 2012.
[10]   AUDREN J T, MERLET E, MELEARD J, et al. Valve control device: US, US7026746 [P]. 2006-04-11.
[11]   SONG M G, HUR Y J, PARK N C, et al Design of a voice-coil actuator for optical image stabilization based on genetic algorithm[J]. IEEE Transactions on Magnetics, 2009, 45 (10): 4558- 4561
doi: 10.1109/TMAG.2009.2021399
[12]   俞军涛, 焦宗夏, 吴帅 基于液压微位移放大结构的新型压电陶瓷直接驱动阀设计及仿真[J]. 机械工程学报, 2013, 49 (2): 151- 158
YU Jun-tao, JIAO Zong-xia, WU Shuai Design and simulation study on new servo valve direct driven by piezoelectric actuator using hydraulic amplification[J]. Chinese Journal of Mechanical Engineering, 2013, 49 (2): 151- 158
doi: 10.3969/j.issn.1674-8530.2013.02.013
[13]   WU S, JIAO Z, YAN L, et al Development of a direct-drive servo valve with high-frequency voice coil motor and advanced digital controller[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19 (3): 932- 942
doi: 10.1109/TMECH.2013.2264218
[14]   YANG Z, HE Z, LI D, et al Direct drive servo valve based on magnetostrictive actuator: multi-coupled modeling and its compound control strategy[J]. Sensors and Actuators A Physical, 2015, 235: 119- 130
doi: 10.1016/j.sna.2015.09.032
[15]   LEI H, HU X Research on application of D633 series direct drive servo-proportional control valves[J]. Machine Tool and Hydraulics, 2007, 35 (9): 171- 172
[16]   JOHNSON D D. Direct drive servo valve with rotary valve: US, US 4800924 A [P]. 1989-01-31.
[17]   LAUX K. Motor-to-spool coupling for rotary-to-linear direct drive valve: US, US5263681 [P]. 1993-11-23.
[18]   LEONARD M B. Rotary servo valve: US, US 5954093 A [P]. 1999-09-21.
[19]   原佳阳, 訚耀保, 陆亮, 等 旋转直接驱动式电液压力伺服阀机理及特性分析[J]. 机械工程学报, 2018, 54 (16): 186- 194
YUAN Jia-yang, YIN Yao-bao, LU Liang, et al Analysis of rotary direct drive electro-hydraulic pressure control servo valve[J]. Chinese Journal of Mechanical Engineering, 2018, 54 (16): 186- 194
[20]   ROBERT D, JOHN W. Direct dive valve-ball drive mechanism: US, US4672922 A [P]. 1987-06-16.
[21]   冀宏, 崔腾霞, 陈晓明, 等 滑阀间隙中方形微米颗粒的旋转现象[J]. 兰州理工大学学报, 2017, 43 (5): 51- 55
JI Hong, CUI Teng-xia, CHEN Xiao-ming, et al Rotation phenomenon of square micron particles in clearance of spool valve[J]. Journal of Lanzhou University of Technology, 2017, 43 (5): 51- 55
doi: 10.3969/j.issn.1673-5196.2017.05.009
[22]   刘新强. 液压滑阀热力耦合形变与污染卡滞机制的研究[D]. 兰州: 兰州理工大学, 2013.
LIU Xin-qiang. The research of thermal-mechanical coupling and sticking mechanism for contamination of hydraulic spool valve [D]. Lanzhou: Lanzhou University of Technology, 2013.
[23]   刘晓红, 柯坚, 刘桓龙 液压滑阀径向间隙温度场的CFD研究[J]. 机械工程学报, 2006, 42 (b05): 231- 234
LIU Xiao-hong, KE Jian, LIU Heng-long CFD research on temperature field in radial clearance of hydraulic spool valve[J]. Chinese Journal of Mechanical Engineering, 2006, 42 (b05): 231- 234
[24]   LI B, JIAO Z, WU S, et al. Research on a new direct drive electro-hydraulic proportional pressure valve for aircraft braking system [C] // IEEE International Conference on Aircraft Utility Systems. Beijing: IEEE, 2016: 1192–1196.
[25]   WANG D The force analysis of the phenomind of hydraulic block on hydraulic spool valve[J]. Journal of Shenyang University: Natural Science Edition, 1994, (4): 76- 78
[26]   AMIRANTE R, MOSCATELLI P G, CATALANO L A Evaluation of the flow forces on a direct (single stage) proportional valve by means of a computational fluid dynamic analysis[J]. Energy Conversion and Management, 2007, 48 (3): 942- 953
doi: 10.1016/j.enconman.2006.08.024
[27]   FU G An extension of Hertz's theory in contact mechanics[J]. Journal of Applied Mechanics, 2007, 74 (2): 373- 374
doi: 10.1115/1.2188017
[1] Teng-yi HUANG,Jin ZHOU,Yan XU,Fan-xu MENG. Modeling of MR damper based on multi-field coupling analysis and influence of structural parameters[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2001-2008.
[2] Yan-long ZHAO,Xing-fei LI,Shao-bo YANG,Hong-yu LI,Jia-yi XU,Yue LIN. Variable buoyancy system performance for profile buoy “Fuxing”[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1240-1248.
[3] Fei WANG,Guo-fang GONG,Li-wen DUAN,Yong-feng QIN. XGBoost based intelligent determination system design of tunnel boring machine operation parameters[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 633-641.
[4] He-ran ZHANG,Xiao-ping OUYANG,Sheng-rong GUO,Yu-long LIU. Analysis on whistle of pressure servo-valve based on oil-return resistance[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2085-2091.
[5] Wen-han CAO,Jun GONG,Hong-gang WANG,Gui GAO,Yuan QI,Dong-ya YANG. Numerical simulation on wear-thermal-stress coupling behavior of cap-seal seal and optimization design[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 258-267.
[6] OUYANG Xiao-ping, ZHAO Tian-fei, LI Feng, YANG Shang-bao, ZHU Ying, YANG Hua-yong. Integral variable PI control on flow load simulator of aircraft hydraulic system[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1111-1118.
[7] DING Ru-qi, XU Bing, ZHANG Jun-hui. Coupling property of pressure and velocity compound control in individual metering systems[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1126-1134.
[8] ZHANG Qiang, WEI Jian-hua, SHI Wen-zhuo. Blank holder force control of hydraulic cushion with soft relief fuzzy PID controller[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1143-1152.
[9] NI Jing, FENG Guo-dong, WANG Zhi-qiang, GAO Dian-rong, XU Ming. Optimization design of internal curve type water hydraulic motor with plain flow distribution[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(5): 946-953.
[10] DING Jia-xin, CHEN Ying-long, ZHOU Hua. Effect on residual wall thickness of parts with floating core injection of water-assisted injection molding[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(5): 937-945.
[11] XU Bing, SU Qi, ZHANG Jun-hui, LU Zhen-yu. Analysis for drive circuit and improved current controller for proportional amplifier[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 800-806.
[12] DU Rui long, CHEN Ying long, ZHOU Hua, WANG Jia. New distributing mechanism for high speed single-piston axial piston pump[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(10): 1902-1910.
[13] WANG Jian sen, LIU Yao lin, JI Hong, WANG Peng fei. Transient simulation on flow force of non-circular opening spool valve[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(10): 1922-1926.
[14] HU Xiao dong, GU Lin yi, ZHANG Fan meng. High-speed on/off valves applied in digital displacement motor[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(8): 1551-1560.
[15] QUAN Ling xiao, LI Dong, LIU Song, LI Chang chun, KONG Xiang dong. Influence factors analysis on frequency domain characteristics of expansion loop[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(6): 1065-1072.