Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (5): 843-854    DOI: 10.3785/j.issn.1008-973X.2021.05.005
    
Aircraft final assembly line modeling based on digital twin
Shou-guo ZHENG1(),Yong-de ZHANG2,Wen-tian XIE1,Hu FAN2,Qing WANG1,*()
1. Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
2. Xi’an Aircraft Industrial (Group) Co. Ltd, Xi’an 710089, China
Download: HTML     PDF(2002KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The components of the aircraft assembly line and the business logic were analyzed, and a digital twin based modeling framework for the aircraft assembly line was proposed, in order to realize the real-time interaction and deep integration of physical space and information space in the final assembly line of aircraft manufacturers. The modeling and the implementation of the key elements of assembly line were elaborated from the six-dimensional perspective of “human, machine, material, method, environment, and measurement”. Correspondingly, the technical process of the three-dimensional visualization and the information integration platform of the aircraft assembly line was proposed. A three-dimensional digital model of the workshop was established in CATIA. Then, a virtual space was built up based on the browser-based framework and WebGL technology and the real-time mapping of physical entities to virtual space was achieved by collecting process data from the shop-floor. An aircraft final assembly line was taken as an example, the synchronous mapping between the assembly workshop and virtual visualization, webServices service and information query service were realized, which improves the assembly efficiency and can provide scientific references for manual decision.



Key wordsaircraft final assembly      cyber-physical fusion      digital twin technology      WebGL      virtual-real mapping     
Received: 13 August 2020      Published: 10 June 2021
CLC:  TP 391  
Fund:  国家重点研发计划资助项目(2019YFB1707501);国家自然科学基金资助项目(51975520)
Corresponding Authors: Qing WANG     E-mail: sgzheng@zju.edu.cn;wqing@zju.edu.cn
Cite this article:

Shou-guo ZHENG,Yong-de ZHANG,Wen-tian XIE,Hu FAN,Qing WANG. Aircraft final assembly line modeling based on digital twin. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 843-854.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.05.005     OR     http://www.zjujournals.com/eng/Y2021/V55/I5/843


基于数字孪生的飞机总装生产线建模

为了实现飞机制造企业总装生产线车间物理空间与信息空间的实时交互与深度融合,通过分析飞机总装生产线组成单元与生产业务逻辑,提出基于数字孪生的飞机总装生产线车间建模框架. 从“人、机、料、法、环、测”六维视角出发,阐述生产线关键要素建模与实现,并提出飞机总装生产线三维可视化及信息集成平台实现技术流程. 在CATIA中建立车间三维数字模型,基于浏览器和WebGL技术建立虚拟空间,通过采集生产现场过程数据实现物理实体向虚拟空间的实时映射. 以某型飞机总装生产线车间为例,实现总装现场与虚拟可视化的同步映射、WebServices服务、信息查询服务及装配工艺过程查询服务,有效提高作业效率并为工作人员决策提供科学参考.


关键词: 飞机总装生产线,  信息物理融合,  数字孪生技术,  WebGL,  虚实映射 
Fig.1 Logic diagram of aircraft assembly line business
Fig.2 Modeling framework of aircraft assembly line based on digital twin
Fig.3 Relationship of six elements
Fig.4 Network topology of element information collect
Fig.5 Flowchart of database operation
Fig.6 Technical flow chart of 3D visualization and information integration platform for aircraft assembly production line
Fig.7 Three-dimensional scene display of aircraft assembly line
装配阶段 装配对象
机身进站 吊装人员就位 机身数控定位器组运动到工作配置位置,
伸缩平台均缩回
机身进站AO 机身部件初定位
机翼吊装 吊装人员就位 机翼数控定位器组运动到工作配置位置 机翼吊装AO 机翼部件初定位
机身调姿 测量调姿人员就位 机身数控定位器组协调运动 机身调姿AO 测量机身检测点 机身部件精定位
机翼调姿 测量调姿人员就位 机翼数控定位器组协调运动 机翼调姿AO 测量机翼检测点 机翼部件精定位
翼身对接 对接人员就位 机翼数控定位同步升降运动,伸缩平台均伸出 翼身对接AO 测量水平测量点 机身机翼大十字对接,形成整机
Tab.1 Assembly environment requirements and state changes of assembly objects in different assembly stages
Fig.8 Interface of files operation for MES system
Fig.9 Interface of files operation for field device
Fig.10 Realtime data of FP1
Fig.11 History data of FP1
Fig.12 Fault information inquiry of FP1
[1]   范玉清, 梅中义, 陶剑. 大型飞机数字化制造工程[M]. 北京: 航空工业出版社, 2011: 804-891.
FAN Yu-qing, MEI Zhong-yi, TAO Jian. Large aircraft digital manufacturing engineering [M]. Beijing: Aviation Industry Press, 2011: 804-891.
[2]   杜品圣 智能工厂: 德国推进工业4.0战略的第一步(下)[J]. 自动化博览, 2014, (2): 50- 55
DU Pin-sheng Intelligent factory: the first step of germany's industrial 4.0 strategy (last of two volumes)[J]. Automation Panorama, 2014, (2): 50- 55
doi: 10.3969/j.issn.1003-0492.2014.02.032
[3]   LEEE A. Cyber physical systems: design challenges [C]// Proceedings of the 11th IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC 2008). Orlando: IEEE Computer Society, 2008: 363-369.
[4]   RAJKUMAR R R, LEE I, SHA L, et al. Cyber-physical systems: the next computing revolution [C]// Proceedings of the 47th Design Automation Conference. Anaheim: ACM, 2010: 731-736.
[5]   TAO F, CHENG Y, XU L, et al CCIoT-CMfg: cloud computing and internet of things-based cloud manufacturing service system[J]. IEEE Transactions on Industrial Informatics, 2014, 10 (2): 1435- 1442
doi: 10.1109/TII.2014.2306383
[6]   TAO F, CHENG J F, QI Q L, et al Digital twin-driven product design, manufacturing and service with big data[J]. The International Journal of Advanced Manufacturing Technology, 2017, 94 (4): 3563- 3576
doi: 10.1007%2Fs00170-017-0233-1
[7]   TAO F, ZHANG M Digital twin shop-floor: a new shop-floor paradigm towards smart manufacturing[J]. IEEE Access, 2017, 5: 20418- 20427
doi: 10.1109/ACCESS.2017.2756069
[8]   陶飞, 程颖, 程江峰, 等 数字孪生车间信息物理融合理论与技术[J]. 计算机集成制造系统, 2017, 23 (8): 1603- 1611
TAO Fei, CHENG Ying, CHENG Jiang-feng, et al Theories and technologies for cyber-physical fusion in digital twin shop-floor[J]. Computer Integrated Manufacturing System, 2017, 23 (8): 1603- 1611
[9]   TUEGEL E J, INGRAFFEA A R, EASON T G, et al Reengineering aircraft structural life prediction using a digital twin[J]. International Journal of Aerospace Engineering, 2011, 2011 (1687–5966): 1- 14
[10]   KRAFT E M. The US air force digital thread/digital twin-life cycle integration and use of computational and experimental knowledge [C]// Proceeding of 54th AIAA Aerospace Sciences Meeting. San Diego: CA, 2016.
[11]   FOURGEAU E, GOMEZ E, ADLI H, et al. System engineering workbench for multi-views systems methodology with 3D experience platform: the aircraft radar use case [M]// Complex Systems Design and Management Asia. Berlin: Springer International Publishing, 2016.
[12]   庄存波, 刘检华, 熊辉, 等 产品数字孪生体的内涵、体系结构及其发展趋势[J]. 计算机集成制造系统, 2017, 23 (4): 753- 768
ZHUANG Cun-bo, LIU Jian-hua, XIONG Hui, et al The connotation, architecture and development trend of product digital twin[J]. Computer Integrated Manufacturing System, 2017, 23 (4): 753- 768
[13]   GREYCE N S, CHARLES D, CARLOS E P, et al Digital twin data modeling with AutomationML and a communication methodology for data exchange[J]. IFAC-Papers Online, 2016, 49 (30): 12- 17
doi: 10.1016/j.ifacol.2016.11.115
[14]   GRIEVES M, VICKERS J. Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems [M]// Transdisciplinary Perspectives on Complex Systems. Berlin: Springer-Verlag, 2017.
[15]   LI C C, MAHADEVAN S, LING Y, et al Dynamic bayesian network for aircraft wing health monitoring digital twin[J]. AIAA Journal, 2017, 55 (3): 930- 941
doi: 10.2514/1.J055201
[16]   KAZI M A, ABDULMOTALEB E S C2PS: a digital twin architecture reference model for the cloud-based CPS[J]. IEEE Access, 2017, 5: 2050- 2062
doi: 10.1109/ACCESS.2017.2657006
[17]   ZHENG Y, YANG S, CHENG H C An application framework of digital twin and its case study[J]. Journal of Ambient Intelligence and Humanized Computing, 2019, 10 (3): 1141- 1153
doi: 10.1007/s12652-018-0911-3
[18]   陶飞, 刘蔚然, 张萌, 等 数字孪生五维模型及十大领域应用[J]. 计算集成制造系统, 2019, 25 (1): 1- 18
TAO Fei, LIU Wei-ran, ZHANG Meng, et al Five dimension digital twin model and its ten applications[J]. Computational Integrated Manufacturing System, 2019, 25 (1): 1- 18
[19]   陶飞, 张萌, 程江峰, 等 数字孪生车间: 一种未来车间运行新模式[J]. 计算集成制造系统, 2017, 23 (1): 1- 9
TAO Fei, ZHANG Meng, CHENG Jiang-feng, et al Digital twin workshop: anew mode of workshop operation in the future[J]. Computational Integrated Manufacturing System, 2017, 23 (1): 1- 9
[20]   陶飞, 刘蔚然, 刘检华, 等 数字孪生及其应用探究[J]. 计算机集成制造系统, 2018, 24 (1): 1- 18
TAO Fei, LIU Wei-ran, LIU Jian-hua, et al Digital twin and its potential application exploration[J]. Computational Integrated Manufacturing System, 2018, 24 (1): 1- 18
[21]   柳林燕, 杜宏祥, 汪惠芬, 等 车间生产过程数字孪生系统构建及应用[J]. 计算集成制造系统, 2019, 25 (6): 1536- 1546
LIU Lin-yan, DU Hong-xiang, WANG Hui-fen, et al Construction and application of digital twin system for production process in workshop[J]. Computational Integrated Manufacturing System, 2019, 25 (6): 1536- 1546
[22]   郭东升, 鲍劲松, 史恭威, 等 基于数字孪生的航天结构件的制造车间建模研究[J]. 东华大学学报: 自然科学版, 2018, 44 (4): 579- 587
GUO Dong-sheng, BAO Jin-song, SHI Gong-wei, et al Research on modeling of aerospace structural parts manufacturing workshop based on digital twin[J]. Journal of DongHua University: Natural Sicence, 2018, 44 (4): 579- 587
[23]   郑守国, 崔雁民, 王青, 等 飞机装配现场数据采集平台设计[J]. 浙江大学学报: 工学版, 2018, 52 (8): 1526- 1538
ZHENG Shou-guo, CUI Yan-min, WANG Qing, et al Design of field data acquisition platform for aircraft assembly[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (8): 1526- 1538
[1] WANG Qing, WEN Li-qing, LI Jiang-xiong, KE Ying-lin, LI Tao, ZHANG Shi-jiong. Modeling and optimization for aircraft final assembly line based on Petri net[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(7): 1224-1231.