|
|
2D non-cohesive earthen embankment breach model based on linear erosion formula |
Meng-fan LIU1(),Gang-feng WU2,*(),Ke-feng ZHANG2,Ping DONG2,3 |
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China 2. School of Civil Engineering and Architecture, NingboTech University, Ningbo 315100, China 3. School of Engineering, University of Liverpool, Liverpool L69 3BX, United Kingdom |
|
|
Abstract A two-dimensional non-cohesive earthen embankment breach model was developed based on a linear erosion formula. Instead of using sediment transport rate and solving sediment transport equations, the relationship between the bed erosion rate and the flow shear stress was directly established based on a linear erosion formula, to calculate the embankment breach. Compared to the existing detailed physically based model, the proposed model was simpler and more efficient. Firstly, two different examples were used, and the validity of a bed slope failure algorithm was verified. Then, the proposed model was applied to simulate the overtopping breach experiments of one-dimensional and two-dimensional non-cohesive earthen embankment. Results showed that the calculated values of the model were all in good agreement with the measurements at the crest elevation, the final breach width and the peak discharge. And the breach of non-cohesive earthen embankment was simulated fairly accurately by the model. Finally, a sensitivity analysis of key parameters was performed to investigate the effects of different parameter values on the simulated results.
|
Received: 12 April 2021
Published: 29 March 2022
|
|
Fund: 国家自然科学基金资助项目(51909234);浙江省自然科学基金资助项目(LQ19E090006);浙江省教育厅一般科研资助项目(Y201737690) |
Corresponding Authors:
Gang-feng WU
E-mail: 21912141@zju.edu.cn;zjdxwgf@gmail.com
|
基于线性冲蚀公式的二维非黏性土石坝溃决模型
基于线性冲蚀公式建立二维非黏性土石坝溃决模型. 所建模型利用线性冲蚀公式建立床面冲刷率与水流切应力的关系以计算坝体变形,无须应用输沙率公式和求解泥沙输移方程. 与现有精细物理模型相比,所建模型更简单,计算效率更高. 利用2个不同形式的算例,验证边坡坍塌算法的有效性;将所建模型分别应用于一维和二维非黏性土石坝漫顶实验,模型计算的坝顶高程、溃口最终宽度和峰值流量等关键指标值与测量值吻合良好,表明该模型能够较为准确地模拟非黏性土石坝溃坝. 对模型关键参数进行敏感性分析,分析不同参数对计算结果的影响.
关键词:
非黏性土石坝,
漫顶,
数值模拟,
线性冲蚀公式,
中心迎风格式
|
|
[1] |
陈阳, 刘志文 美国伊登维尔大坝和桑福德大坝事故及教训[J]. 中国煤炭, 2020, 46 (7): 113- 117 CHEN Yang, LIU Zhi-wen Edenville Dam and Sanford Dam accidents in the United State and warnings for China[J]. China Coal, 2020, 46 (7): 113- 117
|
|
|
[2] |
李宏恩, 盛金保, 何勇军 近期国际溃坝事件对我国大坝安全管理的警示[J]. 中国水利, 2020, (16): 19- 22 LI Hong-en, SHENG Jin-bao, HE Yong-jun Global dam break events raise an alert about dam safety management[J]. China Water Resources, 2020, (16): 19- 22
|
|
|
[3] |
周建银, 姚仕明, 王敏, 等 土石坝漫顶溃决及洪水演进研究进展[J]. 水科学进展, 2020, 31 (2): 287- 301 ZHOU Jian-yin, YAO Shi-ming, WANG Min, et al Review on overtopping failure and flood evolution of earth-rock dams[J]. Advances in Water Science, 2020, 31 (2): 287- 301
|
|
|
[4] |
ASCE/EWRI Task Committee on Dam/Levee Breaching Earthen embankment breaching[J]. Journal of Hydraulic Engineering, 2011, 137 (12): 1549- 1564
doi: 10.1061/(ASCE)HY.1943-7900.0000498
|
|
|
[5] |
梅世昂, 陈生水, 钟启明, 等 土石坝溃坝参数模型研究[J]. 工程科学与技术, 2018, 50 (2): 60- 66 MEI Shi-ang, CHEN Sheng-shui, ZHONG Qi-ming, et al Parametric model for breaching analysis of earth-rock dam[J]. Advanced Engineering Sciences, 2018, 50 (2): 60- 66
|
|
|
[6] |
FROEHICH D C Embankment dam parameters and their uncertainties[J]. Journal of Hydraulic Engineering, 2008, 134 (12): 1708- 1721
doi: 10.1061/(ASCE)0733-9429(2008)134:12(1708)
|
|
|
[7] |
GUAN M, WRIGHT N G, SLEIGH P A 2D process-based morpho-dynamic model for flooding by non-cohesive dyke breach[J]. Journal of Hydraulic Engineering, 2014, 140 (7): 04014022
doi: 10.1061/(ASCE)HY.1943-7900.0000861
|
|
|
[8] |
ZHONG Q, WU W, CHEN S, et al Comparison of simplified physically based dam breach models[J]. Natural Hazards, 2016, 84: 1385- 1418
doi: 10.1007/s11069-016-2492-9
|
|
|
[9] |
杨忠勇, 罗铃, 杨百银, 等 土石坝溃决过程中溃口发展及溃坝洪水计算方法讨论[J]. 水力发电学报, 2019, 45 (9): 43- 47 YANG Zhong-yong, LUO Ling, YANG Bai-yin, et al Discussion on the breach process of earth-rock dam and the calculation method of dam breach flood[J]. Water Power, 2019, 45 (9): 43- 47
|
|
|
[10] |
WU W Simplified physically based model of earthen embankment breaching[J]. Journal of Hydraulic Engineering, 2013, 139 (8): 837- 851
doi: 10.1061/(ASCE)HY.1943-7900.0000741
|
|
|
[11] |
傅旭东, 刘帆, 马宏博, 等 基于物理模型的唐家山堰塞湖溃决过程模拟[J]. 清华大学学报:自然科学版, 2010, 50 (12): 1910- 1914 FU Xu-dong, LIU Fan, MA Hong-bo, et al Physically based simulation of the breaching of the Tangjiashan Quake Lake[J]. Journal of Tsinghua University: Science and Technology, 2010, 50 (12): 1910- 1914
|
|
|
[12] |
WANG G Q, LIU F, FU X D, et al Simulation of dam breach development for emergency treatment of the Tangjiashan Quake Lake in China[J]. Science in China Series E: Technological Sciences, 2008, 51: 82- 94
doi: 10.1007/s11431-008-6019-9
|
|
|
[13] |
LIU W, HE S Dynamic simulation of a mountain disaster chain: landslides, barrier lakes, and outburst floods[J]. Natural Hazards, 2018, 90: 757- 775
doi: 10.1007/s11069-017-3073-2
|
|
|
[14] |
霍家平, 钟启明, 梅世昂 土石坝溃决过程数值模拟研究进展[J]. 人民长江, 2018, 49 (2): 98- 103 HUO Jia-ping, ZHONG Qi-ming, MEI Shi-ang Review on numerical modeling of earth-rock dam breaching process[J]. Yangtze River, 2018, 49 (2): 98- 103
|
|
|
[15] |
吴钢锋, 贺治国, 刘国华 具有守恒特性的二维溃坝洪水演进数值模型[J]. 水科学进展, 2013, 24 (5): 683- 691 WU Gang-feng, HE Zhi-guo, LIU Guo-hua A well-balanced two-dimensional numerical model for dam-break flow simulation[J]. Advance in Water Science, 2013, 24 (5): 683- 691
|
|
|
[16] |
吴钢锋, 贺治国, 刘国华 基于守恒稳定格式的二维坡面降雨动力波洪水模型[J]. 浙江大学学报:工学版, 2014, 48 (3): 514- 520 WU Gang-feng, HE Zhi-guo, LIU Guo-hua Well-balanced two-dimensional dynamic wave model for rainfall-induced overland flood[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (3): 514- 520
|
|
|
[17] |
TINGSANCHALI T, CHINNARASRI C Numerical modelling of dam failure due to flow overtopping[J]. Hydrological Sciences Journal, 2001, 46 (1): 113- 130
doi: 10.1080/02626660109492804
|
|
|
[18] |
DAZZI S, VACONDIO R, MIGNOSA P Integrated of a levee breach erosion model in a GPU-accelerated 2D shallow water equations code[J]. Water Resource Research, 2019, 55: 682- 702
doi: 10.1029/2018WR023826
|
|
|
[19] |
VOLZ C, ROUSSELOT P, VETSCH, D, et al Numerical modelling of non-cohesive embankment breach with the dual-mesh approach[J]. Journal of Hydraulic Research, 2012, 50 (6): 587- 598
doi: 10.1080/00221686.2012.732970
|
|
|
[20] |
ELALFY E , TABRIZI A A, CHAUDHRY M H. Numerical and experimental modeling of levee breach including slumping failure of breach sides[J]. Journal of Hydraulic Engineering, 2018, 144 (2): 04017066
doi: 10.1061/(ASCE)HY.1943-7900.0001406
|
|
|
[21] |
HANSON G J, WAHL T L, TEMPLE D, et al. Erodibility characteristics of embankment materials [C]// State Dam Safety Officials Association Proceedings. Seattle: [s. n.], 2010.
|
|
|
[22] |
MORRIS M W, HASSAN M, A A M, et al Breach formation: field test and laboratory experiments[J]. Journal of Hydraulic Research, 2005, 45 (Supp1.1): 9- 17
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|