Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (9): 1785-1794    DOI: 10.3785/j.issn.1008-973X.2020.09.015
    
Cavitation control of centrifugal pump based on gap jet principle
Wei-guo ZHAO1,2(),Jia-jia LU1,2,Fu-rong ZHAO1,2
1. College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2. Key Laboratory of Fluid Machinery and System, Lanzhou 730050, China
Download: HTML     PDF(2238KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A passive control method with slot on the blade was proposed, and the cavitation suppression effect and control mechanism of the structure were explored, in order to improve the cavitation flow state in low specific speed centrifugal pump. The restraining effect of the structure on cavitation was explored by numerical simulation method. The modified SST k-ω turbulence model and Kubota cavitation model were used to calculate the steady and unsteady flow on the original impeller and the modified impeller, respectively, to obtain the flow field structure and pressure pulsation characteristic of two impeller forms in each cavitation stage under the design conditions. The calculation results show that the high-pressure fluid flowing to the back of the blade through the gap in the modified impeller increases the pressure on the back of the blade, which has inhibitory effect on initial cavitation, the development of cavitation and the intense stage of cavitation. Especially for the intense stage of cavitation, the cavity volume fraction decreased by 60.6% compared with the original model. the main frequency amplitude of the pressure pulsation in the liquid region of the modified impeller decreased at each cavitation stage, compared with that of the original impeller.



Key wordslow specific speed centrifugal pump      cavitation suppression      gap jet      numerical simulation     
Received: 14 August 2019      Published: 22 September 2020
CLC:  TH 311  
Cite this article:

Wei-guo ZHAO,Jia-jia LU,Fu-rong ZHAO. Cavitation control of centrifugal pump based on gap jet principle. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1785-1794.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.09.015     OR     http://www.zjujournals.com/eng/Y2020/V54/I9/1785


基于缝隙射流原理的离心泵空化控制研究

为了改善低比转速离心泵内的空化流动状态,提出一种在叶片上设置缝隙的被动控制方法,探究该结构对空化的抑制效果及其控制机理. 采用数值模拟方法探讨结构对空化的抑制. 采用修正的SST k-ω湍流模型和Kubota空化模型,对原始叶轮和改型叶轮分别进行定常及非定常数值计算,获得设计工况下2种叶轮形式在各个空化阶段的流场结构及压力脉动特性. 计算结果表明:改型叶轮中经缝隙流向叶片背面的高压流体提高了叶片背面的压力,对空化初生、空化发展及空化剧烈阶段均产生了抑制作用,特别是空化剧烈阶段,与原始叶轮相比,其空泡体积分数减少了60.6%;与原始叶轮相比,改型叶轮内液相区的压力脉动主频幅值在各个空化阶段均有所下降.


关键词: 低比转速离心泵,  空化抑制,  缝隙射流,  数值模拟 
Fig.1 Modified function of turbulent viscosity
参数 符号 数值 单位
设计流量 Q0 8.6 m3/h
额定转速 n 500 r/min
叶轮出口直径 D2 310 mm
叶轮进口直径 D1 85 mm
设计扬程 H 4.5 m
叶片数 Z 6 -
叶轮出口宽度 b2 12 mm
叶片通过频率 BPF 50 Hz
Tab.1 Geometric parameters of single stage single suction model pump
Fig.2 Diagram for geometric model of original model and location parameters of jet hole
Fig.3 Grid of calculation domains and y+ of blade surface
方案 网格节点数 总网格数 H/m
进口段 叶轮 蜗壳
方案1 393 576 815 610 302 852 1 512 038 4.42
方案2 721 868 984 378 370 910 2 077 156 4.58
方案3 721 868 1 317 600 370 910 2 410 378 4.58
Tab.2 Grid independence check of calculation domains
Fig.4 Diagram of centrifugal pump visualization experiment platform
Fig.5 Comparisons between simulated results and experimental results of original impeller
Fig.6 Comparison of external characteristics between original impeller and modified impeller
Fig.7 Comparison of cavitation performance between original impeller and modified impeller
Fig.8 Comparison of cavitation volume fraction between original impeller and modified impeller in one impeller rotation cycle
Fig.9 Absolute pressure distribution in cross section of original impeller and modified impeller
Fig.10 Volume fraction and streamline distribution of cross section of original impeller and modified impeller
Fig.11 Cross section velocity vectorgraph distribution of original impeller and modified impeller with cavitation number of 0.13
Fig.12 Cross section velocity contour distribution of original impeller and modified impeller with cavitation number of 0.13
Fig.13 Turbulence kinetic energy distribution of cross section of original impeller and modified impeller
Fig.14 Layout of section monitoring points in cross section of impeller
Fig.15 Main frequency amplitude distribution of pressure fluctuation at monitoring points in original impeller and modified impeller
[1]   王勇, 刘厚林, 袁寿其, 等 离心泵非设计工况空化振动噪声的试验测试[J]. 农业工程学报, 2012, 28 (2): 35- 38
WANG Yong, LIU Hou-lin, YUAN Shou-qi, et al Experimental testing on cavitation vibration and noise of centrifugal pumps under off-design conditions[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28 (2): 35- 38
doi: 10.3969/j.issn.1002-6819.2012.02.007
[2]   WEI Y S, SHEN Y, JIN S B Scattering effect of submarine hull on propeller non-cavitation noise[J]. Journal of Sound and Vibration, 2016, 370: 319- 335
doi: 10.1016/j.jsv.2016.01.027
[3]   王松林, 谭磊, 王玉川 离心泵瞬态空化流动及压力脉动特性[J]. 振动与冲击, 2013, 32 (22): 168- 173
WANG Song-lin, TAN Lei, WANG Yu-chuan Characteristics of transient cavitation flow and pressure fluctuation for centrifugal pump[J]. Journal of Vibration and Shock, 2013, 32 (22): 168- 173
doi: 10.3969/j.issn.1000-3835.2013.22.031
[4]   潘中永. 泵空化基础[M]. 镇江: 江苏大学, 2010.
[5]   LIU H L, LIU D X, WANG Y, et al Experimental investigation and numerical analysis of unsteady attached sheet cavitating flows in a centrifugal pump[J]. Journal of Hydrodynamics, 2013, 25 (3): 370- 378
doi: 10.1016/S1001-6058(11)60375-3
[6]   黎慧青. 离心泵汽蚀磨损失效分析对策措施研究[D]. 广州: 华南理工大学, 2011.
LI Hui-qing. Studies on cavitation and fretting wear of centrifugal pump and counter measures [D]. Guangzhou: South China University of Technology, 2011.
[7]   PLESSET M S, CHAPMAN R B Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary[J]. Journal of Fluid Mechanics, 1971, 47 (2): 283- 290
doi: 10.1017/S0022112071001058
[8]   魏梦举, 陈力, 伍涛, 等 微尺度空泡溃灭驱使微球运动的机理研究[J]. 物理学报, 2017, 66 (16): 167- 175
WEI Meng-ju, CHEN Li, WU Tao, et al Study on the mechanism of micro-sphere motion driven by micro-cavity collapse[J]. Acta Physica Sinica, 2017, 66 (16): 167- 175
[9]   TIMOSHEVSKIY M V, ZAPRYAGAEV I I, PERVUNIN K S, et al Manipulating cavitation by a wall jet: experiments on a 2D hydrofoil[J]. International Journal of Multiphase Flow, 2018, 99: 312- 328
doi: 10.1016/j.ijmultiphaseflow.2017.11.002
[10]   刘汉儒, 岳少原, 王掩刚, 等 串列叶栅缝隙射流对分离流动及叶栅性能影响的研究[J]. 推进技术, 2018, 39 (12): 2728- 2736
LIU Han-ru, YUE Shao-yuan, WANG Pu-gang, et al Study on the effect of cascade slot jet on separation flow and cascade performance[J]. Journal of Propulsion Technology, 2018, 39 (12): 2728- 2736
[11]   孙涛, 陈红勋, 朱兵, 等 缝隙引流叶轮的优化设计[J]. 上海大学学报: 自然科学版, 2014, 20 (2): 207- 213
SUN Tao, CHEN Hong-xun, ZHU Bing, et al Optimal design of centrifugal pumps with gap drainage blades[J]. Journal of Shanghai University: Natural Science Edition, 2014, 20 (2): 207- 213
[12]   张文著, 魏群, 陈红勋, 等 缝隙引流叶轮离心泵的压力脉动及振动特性[J]. 上海大学学报: 自然科学版, 2018, 24 (2): 236- 248
ZHANG Wen-zhu, WEI Qun, CHEN Hong-xun, et al Pressure fluctuation and vibration performance of centrifugal pump with gap drainage impeller[J]. Journal of Shanghai University: Natural Science Edition, 2018, 24 (2): 236- 248
[13]   王洋, 谢山峰, 王维军 开缝叶片低比转数离心泵空化性能的数值模拟[J]. 排灌机械工程学报, 2016, 34 (3): 210- 215
WANG Yang, XIE Shan-feng, WANG Wei-jun Numerical simulation of cavitation performance of low specific speed centrifugal pump with slotted blades[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34 (3): 210- 215
doi: 10.3969/j.issn.1674-8530.15.0114
[14]   韩伟, 高丽敏, 白莹, 等 高速离心叶轮叶片开缝的数值研究[J]. 流体机械, 2011, 39 (11): 17- 21
HAN Wei, GAO Li-min, BAI Ying, et al Numerical study of centrifugal compressor with slots in blade Surface[J]. Fluid Machinery, 2011, 39 (11): 17- 21
doi: 10.3969/j.issn.1005-0329.2011.11.004
[15]   胡赞熬, 王俊雄, 祝宝山, 等 离心泵叶轮穿孔对空化性能的影响[J]. 热能动力工程, 2018, 33 (10): 44- 51
HU Zan-ao, WANG Jun-xiong, ZHU Bao-shan, et al Effect of blade perforation on centrifugal pump cavitation characteristics[J]. Journal of Engineering for Thermal Energy and Power, 2018, 33 (10): 44- 51
[16]   赵伟国, 赵国寿, 咸丽霞, 等 离心泵叶片表面布置障碍物抑制空化的数值模拟与实验[J]. 农业机械学报, 2017, 48 (9): 111- 120
ZHAO Wei-guo, ZHAO Guo-shou, XIAN Li-xia, et al Effect of surface-fitted obstacle in centrifugal pump on cavitation suppression[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48 (9): 111- 120
doi: 10.6041/j.issn.1000-1298.2017.09.014
[17]   MENTER F R Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32 (8): 1598- 1605
doi: 10.2514/3.12149
[18]   REBOUD J L, STUTZ B, COUTIER O. Two phase flow structure of cavitation experiment and modeling of unsteady effects [C]// Proceedings of the 3rd International Symposium on Cavitation. Grenoble: PISC, 1998.
[19]   KUBOTA A, KATO H, YAMAGUCHI H, et al Unsteady structure measurement of cloud cavitation on a foil section using conditional sampling technique[J]. Journal of Fluids Engineering, 1980, 111 (2): 204- 210
[20]   ZWART P J, GERBER A G, BELAMRI T. A two-phase flow model for predicting cavitation dynamics [C] // Proceedings of the Fifth International Conference on Multiphase Flow. Yokohama: ICMF, 2004.
[21]   ECKARDT D Instantaneous measurements in the jet-wake discharge flow of a centrifugal compressor impeller[J]. Journal of Engineering for Power, 1975, 97 (3): 337- 345
doi: 10.1115/1.3445999
[22]   ECKARDT D Detailed flow investigations within a high-speed centrifugal compressor impeller[J]. ASME Journal of Fluids Engineering, 1976, 98 (3): 390- 402
doi: 10.1115/1.3448334
[23]   李景银, 梁亚勋, 田华 不同型线离心风机叶轮的性能对比研究[J]. 工程热物理学报, 2008, 29 (6): 963- 966
LI Jing-yin, LIANG Ya-xun, TIAN Hua Flow field comparison between two centrifugal impellers with different blade curves[J]. Journal of Engineering Thermophysics, 2008, 29 (6): 963- 966
doi: 10.3321/j.issn:0253-231X.2008.06.016
[24]   关醒凡. 现代泵理论与技术[M]. 北京: 中国宇航出版社, 2010.
[25]   王振东 流体涡旋漫谈[J]. 现代物理知识, 2012, 24 (2): 9- 16
WANG Zhen-dong A random talk on fluid vortex[J]. Modern Physics, 2012, 24 (2): 9- 16
[26]   朱兵. 缝隙引流叶片提高低比转速离心泵性能的机理研究[D]. 上海大学, 2014.
ZHU Bing. Research on the mechanism of performance improving in low specific speed centrifugal pump with gap drainage blades [D]. Shanghai University, 2014.
[1] Meng-ting YU,Ying-ping WANG,Chu-qi SU,Qi TAO,Jian-peng SHI. Research on fuel economy of car trailing semitrailer in platoon[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 455-461.
[2] Yun-liang CUI,Zhi-yuan LI,Gang WEI,Jiang CHEN,Lian-ying ZHOU. Pre-protection effect of underground comprehensive pipe gallery over proposed tunnel[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 330-337.
[3] Chao-feng ZENG,Shuo WANG,Zhi-cheng YUAN,Xiu-li XUE. Characteristics of ground deformation induced by pre-excavation dewatering considering blocking effect of adjacent structure[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 338-347.
[4] Song-song YANG,Mei WANG,Jian-an DU,Yong GUO,Yan GEN. Influence of construction sequence of pipe jacking by pipe-roof pre-construction method on ground surface settlement[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1706-1714.
[5] Ya-bo YU,Ya-dong DENG. Hydrogen leakage and diffusion of high voltage cabin of fuel cell bus[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 381-388.
[6] Zhong YUN,Meng WEN,Zi-rong LUO,Long CHEN. Design and plunge-diving analysis of underwater-aerial transmedia vehicle of bionic kingfisher[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 407-415.
[7] Si-yuan XU,Jun DU,Guang-xi ZHAO,Zheng-ying WEI. Droplet transfer behavior in fused-deposition of 45 steel/tin lead alloy bimetallic structures[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2224-2232.
[8] Yu-qi ZHANG,Nan JIANG,Yong-sheng JIA,Chuan-bo ZHOU,Xue-dong LUO,Ting-yao WU. Blasting vibration characteristics of high-density polyethylene pipes in operation water-filled state[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2120-2127.
[9] Hao-su LIU,Jun-qing LEI. Identification of three-component coefficients of double deck truss girder for long-span bridge[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1092-1100.
[10] Zhong YUN,Meng WEN,Yi JIANG,Long CHEN,Long-fei FENG. Design and hydrodynamic analysis of pectoral fin oscillation propulsion mechanism of bionic manta ray[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 872-879.
[11] Wen-liang QIU,Ha-si HU,Tian TIAN,Zhe ZHANG. Structural parameters affecting seismic behavior of concrete-filled steel tube composite piers[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 889-898.
[12] Yu-qi HUANG,Pan MEI,Xiao-ji CHEN,Chang-shui DENG. Heating strategy for electric vehicular battery pack based on CFD analysis[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 207-213.
[13] Jin XIA,Shi-jie JIN,Xiao-yu HE,Xiao-mei XU,Wei-liang JIN. Effect of electric potential condition on numerical simulation of electrochemical rehabilitation for concrete structures[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2298-2308.
[14] Yu XIANG,Shu-zhe ZHANG,Jun-feng LI,Zheng-ying WEI,Li-xiang YANG,Li-hao JIANG. Numerical simulation and experimental verification for selective laser single track melting forming of Ti6Al4V[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2102-2109.
[15] CHEN Wen-zhuo, CHEN Yan, ZHANG Wei-ming, HE Shao-wei, LI Bo, JIANG Jun-ze. Numerical simulation for dynamic air spray painting of arc surfaces[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2406-2413.