Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (11): 2224-2232    DOI: 10.3785/j.issn.1008-973X.2020.11.018
    
Droplet transfer behavior in fused-deposition of 45 steel/tin lead alloy bimetallic structures
Si-yuan XU(),Jun DU,Guang-xi ZHAO,Zheng-ying WEI*()
State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Download: HTML     PDF(2222KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A numerical calculation model for the morphological evolution process of micro-droplet ejection was established by the method of volume of fluid (VOF), in order to meet the requirements of tungsten inert gas welding (TIG) welding pool and tin-lead alloy droplet matching in 45 steel/tin lead alloy bimetallic structures fused-deposition fabrication process. The effects and the change rules of driving parameters of piezoelectric vibration and internal structural parameters of nozzle on the size and velocity of the droplet were described in the process of piezoelectric driven droplet micro-ejection. Results showed that the droplets had a high sphericity and good controllability in the case of 0.5~0.6 mm nozzle diameter, 5~6 mm nozzle depth, and 4~5 mm annular gap. The influence of excitation frequency and driving amplitude on droplet size was not obvious, and the droplet velocity increased with the increase of excitation frequency and driving amplitude. Comparison between numerical and experimental results showed that the maximum error of droplet size and droplet velocity was less than 10%, indicating that the numerical model is reliable to analyze the droplet micro-ejection process.



Key wordspiezoelectric driven      micro-droplet ejection      finite difference method      numerical simulation      dissimilar metal     
Received: 26 November 2019      Published: 15 December 2020
CLC:  TG 142  
  TG 47  
  TB 31  
Corresponding Authors: Zheng-ying WEI     E-mail: 594579561@qq.com;zywei@mail.xjtu.edu.cn
Cite this article:

Si-yuan XU,Jun DU,Guang-xi ZHAO,Zheng-ying WEI. Droplet transfer behavior in fused-deposition of 45 steel/tin lead alloy bimetallic structures. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2224-2232.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.11.018     OR     http://www.zjujournals.com/eng/Y2020/V54/I11/2224


45钢/锡铅合金复合结构熔融沉积中熔滴过渡行为

面向45钢/锡铅合金复合结构熔融沉积过程中的锡铅合金熔滴与钨极惰性气体保护焊(TIG)焊接熔池的匹配性需求,基于有限差分方法,采用流体体积法(VOF)建立微喷熔滴形态演变过程数值计算模型,分别研究压电驱动式熔滴微喷过程中压电激振驱动参数和喷头内结构参数对于产生熔滴的尺寸及速度的作用和变化规律. 研究发现,当喷孔直径为0.5~0.6 mm,喷孔深度为5~6 mm,环隙为4~5 mm时,锡铅合金熔滴具有较高的球形度,熔滴可控性较好. 压电陶瓷激振频率和驱动行程对于锡铅合金熔滴尺寸影响不明显,熔滴速度随激振频率和驱动行程的增大而增大. 对比数值计算结果与实验结果,发现锡铅合金熔滴尺寸与熔滴速度最大误差均小于10%,表明利用数值计算模型对熔滴微喷过程进行分析较可信.


关键词: 压电驱动式,  微滴喷射,  有限差分,  数值仿真,  异种金属 
几何参数 取值/mm
激振杆杆部直径 10
喷头内部直径 40
激振杆端部直径 34
激振杆端部厚度 5
喷头高度 20
Tab.1 Geometric parameters of numerical model
材料物性 取值
密度/(kg?m?3 8850
黏度/(Pa·s) 1.3×10?3
表面张力/(N?m?1 0.48
热导率/(W·m?1·K?1 436
比热容/(J?kg?1·K?1 175
液相温度/°C 228
Tab.2 Physical property parameters of Sn40Pb60 and initial conditions of model
Fig.1 Diagram of dissimilar metals recombine forming system
Fig.2 Two-dimensional diagram of numerical calculation model of droplet micro-ejection process
Fig.3 Displacement-time graph of exciting rod under trapezoidal wave
Fig.4 Piezoelectric actuated micro-droplet injection model and mesh generation
f /Hz x /μm D /mm H /mm h /mm d /mm
10 40 0.3 2 1 1
50 50 0.4 3 2 2
100 60 0.5 4 3 3
150 70 0.6 5 4 4
200 80 0.7 6 5 5
Tab.3 Value of each parameter in single factor test
Fig.5 Overall distribution diagram of experimental device and schematic diagram of droplet driving part
Fig.6 Pressure field nephogram at each stage of droplet generation
Fig.7 Velocity field nephogram at each stage of droplet generation
Fig.8 CCD capture of droplet flight process
Fig.9 Macroscopic morphology and SEM diagram of droplet
Fig.10 Velocity cloud chart with annular gap of 1 mm
Fig.11 Pressure cloud chart with annular gap of 2 mm
Fig.12 Droplet size and droplet velocity under different annular gaps
Fig.13 Melt's back-flow along annular gap
Fig.14 Droplet size and droplet velocity under different nozzle diameters
Fig.15 Droplet size and droplet velocity at different hole depths
Fig.16 Droplet size and droplet velocity at different heights between bottom surface of exciting rod and nozzle
Fig.17 Droplet velocity under different excitation frequencies and driving amplitudes
[1]   冯吉才, 王廷, 张秉刚, 等 异种材料真空电子束焊接研究现状分析[J]. 焊接学报, 2009, 30 (10): 108
FENG Ji-cai, WANG Ting, ZHANG Bing-gang, et al Analysis on research status of vacuum electron beam welding of heterogeneous materials[J]. Journal of Welding, 2009, 30 (10): 108
[2]   吕攀, 王克鸿, 朱和国 钛合金与不锈钢异种金属焊接的研究现状[J]. 热加工工艺, 2017, (13): 26- 32
LV Pan, WANG Ke-hong, ZHU He-guo Research status of welding of titanium alloy and stainless steel[J]. Thermal Processing Technology, 2017, (13): 26- 32
[3]   李涵嫣. 铜/铝固-液瞬时结合及热处理对界面连接的影响[D]. 西安: 西安理工大学, 2018.
LI Han-yan. Effect of instantaneous solid-liquid bonding of copper/aluminum and heat treatment on interface connection [D]. Xi'an: Xi'an University of Technology, 2018.
[4]   张温馨, 姚渭, 刘莹莹, 等 异种合金的连接工艺特征及其界面的组织性能[J]. 材料导报, 2015, (17): 98- 102
ZHANG Wen-xin, YAO Wei, LIU Ying-ying, et al Properties of different alloys and their interfacial microstructure[J]. Material Guide, 2015, (17): 98- 102
[5]   高波 爆炸焊接的研究进展[J]. 安徽化工, 2017, 43 (3): 19- 22
GAO Bo Development of explosive welding[J]. Anhui Chemical Industry, 2017, 43 (3): 19- 22
[6]   秦国梁, 武传松 铝合金/钢异种材料熔钎焊接工艺及其研究现状[J]. 机械工程学报, 2016, (24): 24- 35
QIN Guo-liang, WU Chuan-song Research status of brazing technology for different materials of aluminum alloy/steel[J]. Chinese Journal of Mechanical Engineering, 2016, (24): 24- 35
[7]   张学军, 唐思熠, 肇恒跃, 等 3D打印技术研究现状和关键技术[J]. 材料工程, 2016, 44 (2): 122- 128
ZHANG Xue-jun, TANG Si-yi, ZHAO Heng-yue, et al Research status and key technologies of 3D printing[J]. Materials Engineering, 2016, 44 (2): 122- 128
[8]   MA M, WANG Z, ZENG X A comparison on metallurgical behaviors of 316L stainless steel by selective laser melting and laser cladding deposition[J]. Materials Science and Engineering: A, 2017, 685: 265- 273
doi: 10.1016/j.msea.2016.12.112
[9]   杨胜. 热处理工艺对ZTC18钛合金组织和性能的影响[D]. 南昌: 南昌航空大学, 2010.
YANG Sheng. Effect of heat treatment on microstructure and properties of ZTC18 titanium alloy [D]. Nanchang: Nanchang Aeronautical University, 2010.
[10]   YAO C, XU B, ZHANG X, et al Interface microstructure and mechanical properties of laser welding copper-steel dissimilar[J]. Optics and Laser in Engineering, 2009, 47 (7/8): 807- 814
[11]   韦亚辉. 45钢/锡铅合金异种金属复合结构熔融涂覆成形工艺与界面结合性能研究[D]. 西安: 西安交通大学, 2019.
WEI Ya-hui. Investigation on the fused-coating AM process and interfacial properties in dissimilar metal 45 steel/tin-lead alloy [D]. Xi’an: Xi’an Jiaotong University, 2019.
[12]   HIRT C W, NICHOLS B D Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39 (1): 201- 225
doi: 10.1016/0021-9991(81)90145-5
[13]   张健, 方杰, 范波芹 VOF方法理论与应用综述[J]. 水利水电科技进展, 2005, 25 (2): 67- 70
ZHANG Jian, FANG Jie, FAN Bo-qin A review of the theory and application of VOF method[J]. Advances in Water Conservancy and Hydropower Technology, 2005, 25 (2): 67- 70
[14]   归柯庭, 汪军, 王秋颖. 工程流体力学[M]. 北京: 科学出版社, 2003.
GUI Ke-ting, WANG Jun, WANG Qiu-ying. Engineering fluid mechanics [M]. Beijing: Science press, 2003.
[15]   肖渊. 面向微小金属件成形的气动式金属熔滴可控喷射研究[D]. 西安: 西北工业大学, 2012.
XIAO Yuan. Research on controlled injection of pneumatic metal melt droplet for micro-metal forming [D]. Xi’an: Northwestern Polytechnical University, 2012.
[16]   BARTH T, HERBIN R, OHLBERGER M Finite volume methods: foundation and analysis[J]. Encyclopedia of Computational Mechanics Second Edition, 2018, 1- 60
[17]   LIU Z L. Finite volume method [M]// Multiphysics in porous materials. Cham: Springer International Publishing, 2018: 385-395.
[18]   RIEFLER N, WRIEDT T Generation of monodisperse micro-sized droplets using free adjustable signals[J]. Particle and Particle Systems Characterization, 2008, 25 (2): 176- 182
doi: 10.1002/ppsc.200700038
[19]   刘丹丹. 基于Plateau-Rayleigh不稳定性的微液滴生成方法及应用研究[D]. 杭州: 浙江大学, 2015.
LIU Dan-dan. Research on the formation method and application of microdroplets based on Plateau-Rayleigh instability [D]. Hangzhou: Zhejiang University, 2015.
[1] Meng-ting YU,Ying-ping WANG,Chu-qi SU,Qi TAO,Jian-peng SHI. Research on fuel economy of car trailing semitrailer in platoon[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 455-461.
[2] Yun-liang CUI,Zhi-yuan LI,Gang WEI,Jiang CHEN,Lian-ying ZHOU. Pre-protection effect of underground comprehensive pipe gallery over proposed tunnel[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 330-337.
[3] Chao-feng ZENG,Shuo WANG,Zhi-cheng YUAN,Xiu-li XUE. Characteristics of ground deformation induced by pre-excavation dewatering considering blocking effect of adjacent structure[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 338-347.
[4] Wei-guo ZHAO,Jia-jia LU,Fu-rong ZHAO. Cavitation control of centrifugal pump based on gap jet principle[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1785-1794.
[5] Song-song YANG,Mei WANG,Jian-an DU,Yong GUO,Yan GEN. Influence of construction sequence of pipe jacking by pipe-roof pre-construction method on ground surface settlement[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1706-1714.
[6] Ya-bo YU,Ya-dong DENG. Hydrogen leakage and diffusion of high voltage cabin of fuel cell bus[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 381-388.
[7] Zhong YUN,Meng WEN,Zi-rong LUO,Long CHEN. Design and plunge-diving analysis of underwater-aerial transmedia vehicle of bionic kingfisher[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 407-415.
[8] Yu-qi ZHANG,Nan JIANG,Yong-sheng JIA,Chuan-bo ZHOU,Xue-dong LUO,Ting-yao WU. Blasting vibration characteristics of high-density polyethylene pipes in operation water-filled state[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2120-2127.
[9] Hao-su LIU,Jun-qing LEI. Identification of three-component coefficients of double deck truss girder for long-span bridge[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1092-1100.
[10] Zhong YUN,Meng WEN,Yi JIANG,Long CHEN,Long-fei FENG. Design and hydrodynamic analysis of pectoral fin oscillation propulsion mechanism of bionic manta ray[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 872-879.
[11] Wen-liang QIU,Ha-si HU,Tian TIAN,Zhe ZHANG. Structural parameters affecting seismic behavior of concrete-filled steel tube composite piers[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 889-898.
[12] Yu-qi HUANG,Pan MEI,Xiao-ji CHEN,Chang-shui DENG. Heating strategy for electric vehicular battery pack based on CFD analysis[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 207-213.
[13] Jin XIA,Shi-jie JIN,Xiao-yu HE,Xiao-mei XU,Wei-liang JIN. Effect of electric potential condition on numerical simulation of electrochemical rehabilitation for concrete structures[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2298-2308.
[14] Yu XIANG,Shu-zhe ZHANG,Jun-feng LI,Zheng-ying WEI,Li-xiang YANG,Li-hao JIANG. Numerical simulation and experimental verification for selective laser single track melting forming of Ti6Al4V[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2102-2109.
[15] CHEN Wen-zhuo, CHEN Yan, ZHANG Wei-ming, HE Shao-wei, LI Bo, JIANG Jun-ze. Numerical simulation for dynamic air spray painting of arc surfaces[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2406-2413.