Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (4): 664-673    DOI: 10.3785/j.issn.1008-973X.2022.04.005
    
Strain-hardening mechanism and applicability in hypergravity simulation of municipal solid waste
Jia MENG1,2(),Jun-chao LI1,2,*(),Yun-min CHEN1,2
1. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China
2. Center for Hypergravity Experiment and Interdisciplinary Research, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(1720KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Materials such as plastic and peat, quartz sand and kaolin were selected to conduct experimental researches on the characteristics of the organic fiber and soil particles of municipal solid waste (MSW) in order to analyze the strain-hardening mechanism and applicability in hypergravity simulation of MSW. Results show that organic fiber plays a leading role in the strain-hardening characteristics of MSW, and can significantly increase the strength of MSW. The increase in the mass fraction of quartz sand in the soil particles can increase the strength of MSW at small strains, while the increase of the kaolin mass fraction will significantly decrease the failure strain and the peak deviatoric stress of MSW. A method to quantitatively control the mass fraction of organic fiber was proposed based on the effect of each component in order to prepare model MSW. The characteristics of the model MSW accorded with the real MSW. The landfill instability critical water level ratios calculated by the strength parameters of model MSW accorded with the results of the centrifugal simulation tests. The applicability of the hypergravity simulation of the model MSW was verified, which provided an important basis for hypergravity simulation research on deformation and stability of the landfill.



Key wordsmunicipal solid waste (MSW)      model MSW      strain-hardening      organic fiber      applicability of hypergravity simulation     
Received: 15 May 2021      Published: 24 April 2022
CLC:  TU 411  
Fund:  国家自然科学基金资助项目(51988101); 浙江省基础公益研究计划资助项目(LGF21E080013)
Corresponding Authors: Jun-chao LI     E-mail: 1065467906@qq.com;lijunchao@zju.edu.cn
Cite this article:

Jia MENG,Jun-chao LI,Yun-min CHEN. Strain-hardening mechanism and applicability in hypergravity simulation of municipal solid waste. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 664-673.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.04.005     OR     https://www.zjujournals.com/eng/Y2022/V56/I4/664


固废应变硬化机理与超重力模拟适用性

为了探究城市固废应变硬化机理及模型固废在超重力模拟试验中的适用性,选用塑料和草炭、石英砂和高岭土等材料,分别对固废有机纤维和土颗粒的各项特性进行试验研究. 结果表明,有机质纤维对固废的应变硬化特性起主导作用,可以显著地提高固废强度;土颗粒中石英砂质量分数增加可以提高固废在小应变时的强度,高岭土质量分数增大会导致固废破坏应变及偏应力峰值明显减小. 基于各组分作用,提出定量控制有机纤维质量分数的方法配制模型固废,配制出的模型固废与真实固废的各项特性非常吻合. 采用模型固废强度参数计算得到的填埋场失稳临界水位比与离心模拟试验结果一致,验证了所配固废的超重力模拟适用性,为填埋场变形与稳定超重力研究提供了重要依据.


关键词: 城市固体废弃物(MSW),  模型固废,  应变硬化,  有机纤维,  超重力模拟适用性 
固废种类 wB/%
厨余垃圾 塑料 纸、木、纺织物、皮革等纤维 煤渣和粉尘 金属和玻璃
新鲜固废 32.4 18.4 16.3 29.3 3.6
部分降解固废 16.4 17.6 10.2 53.3 2.5
Tab.1 Components of MSW from Suzhou Qizishan landfill
Fig.1 Stress-strain curves of different components of MSW
Fig.2 Materials of model MSW
试验
组别
σ3/kPa mpmkmq
wor/% wk/% wq/%
ZF1 200 1∶0.5∶0 34.3 33.3 0
ZF2 200 1∶0∶0.5 34.3 0 33.3
ZF3 200 1∶0.2∶0.3 34.3 13.33 20
ZF4 200 1∶0.2∶0.4 32.2 12.5 25
ZF5 200 1∶0.2∶0.6 28.6 16.67 33.33
ZF6 200 1∶0.2∶0.8 25.75 10 40
ZF7 200 1∶0.33∶0.33 30.9 20 20
ZF8 200 1∶0.5∶0.5 25.75 25 25
ZF9 200 1∶0.67∶0.67 22.1 28.57 28.57
ZF10 200 1∶0.8∶0.8 19.8 30.77 30.77
ZF11 200 1∶1∶1 17.2 33.33 33.33
ZF12 200 0∶1∶1 0 50 50
Tab.2 Analysis of role of each component of MSW
试验
组别
试样种类 σ3/kPa mkmq
wor/%
JX1-1 石英砂+高岭土 100 1∶4 0
JX1-2 石英砂+高岭土 200 1∶4 0
JX1-3 石英砂+高岭土 400 1∶4 0
JX2-1 高岭土+石英砂+塑料筋相 100 1∶4 3
JX2-2 高岭土+石英砂+塑料筋相 200 1∶4 3
JX2-3 高岭土+石英砂+塑料筋相 400 1∶4 3
JX3-1 高岭土+石英砂+草炭 100 1∶4 3
JX3-2 高岭土+石英砂+草炭 200 1:4 3
JX3-3 高岭土+石英砂+草炭 400 1∶4 3
JX4-1 高岭土+石英砂+塑料筋相 200 1∶4 7
JX4-2 高岭土+石英砂+塑料筋相 200 1∶4 10
JX5-1 高岭土+石英砂+草炭 200 1∶4 7
JX5-2 高岭土+石英砂+草炭 200 1∶4 10
Tab.3 Analysis of role of organic phase
Fig.3 Samples with different organic phase mass fraction
Fig.4 Triaxial test procedure
Fig.5 Stress-strain curve of model MSW with different kaolin mass fraction
Fig.6 Stress-strain curve of model MSW with different quartz sand mass fraction
Fig.7 Influence of organic phase mass fraction on model MSW
Fig.8 Comparison of stress-strain curves of model MSW with different organic phase mass fraction
Fig.9 Influence of different reinforcement on stress-strain characteristics of model MSW
Fig.10 Influence of organic phase mass fraction on peak deviator stress and failure strain
Fig.11 Influence of cosmid mass fraction on peak deviator stress and failure strain
配置方法 试验
组别
试样种类 σ3/kPa mkmq wor/%
经验法 JY-1 高岭土+石英砂+草炭 100 1∶4 34.3
JY-2 高岭土+石英砂+草炭 200 1∶4 34.3
JY-3 高岭土+石英砂+草炭 400 1∶4 34.3
有机筋相
控制法
KZ1-1 高岭土+石英砂+草炭 100 1∶4 35
KZ1-2 高岭土+石英砂+草炭 200 1∶4 35
KZ1-3 高岭土+石英砂+草炭 400 1∶4 35
KZ2-1 高岭土+石英砂+草炭 100 1∶4 45
KZ2-2 高岭土+石英砂+草炭 200 1∶4 45
KZ2-3 高岭土+石英砂+草炭 400 1∶4 45
Tab.4 Research on applicability of model MSW
Fig.12 Model MSW with different mass fraction of peat phase
固废种类 T/a h/m wor/% ww/% γ/(kN·m?3 e E/MPa?1 k/(10?6m·s?1
模型固废 (新鲜) 45 60 8 2.5 3.6 6.1
模型固废 (部分降解) 35 50 9 1.6 2.4 4.4
七子山固废 (新鲜) 0 5 40~50 65 8.3 2.7 3.3 6.24
七子山固废 (部分降解) 5 15 30~40 50 9.4 1.7 2.2 4.76
经验法[12] (新鲜) 55 7 2.9 3.19 6.6
经验法[12] (部分降解) 45 9 1.6 2.26 4.4
Tab.5 Comparison of basic characteristics of MSW
Fig.13 Comparison of stress-strain curves between model MSW and real MSW
固废种类 εf/% 模型固废 七子山 经验法[12]
c'/kPa $\varphi {'} $/(°) c'/kPa $\varphi {'} $/(°) c'/kPa $\varphi {'} $/(°)
新鲜 10 26.0 14.0 24.0 14.7 25 13.5
20 28.7 25.5 27.0 25.8 30 24.9
部分降解 10 21.0 15.7 23.2 15.0 27 13.4
20 26.0 27.6 29.2 25.7 24 28.8
Tab.6 Comparison of strength parameters between model MSW and real MSW
Fig.14 Slope model of partly degraded MSW
Fig.15 Slope model under critical condition
固废种类 εf/% hw/H dr/% dc/%
离心试验 (新鲜) 0.81
七子山真实固废 (新鲜) 10 0.63
七子山真实固废 (新鲜) 20 0.80 1.2
本次配置固废 (新鲜) 10 0.64 1.6
本次配置固废 (新鲜) 20 0.82 2.5 1.2
离心试验 (部分降解) 0.79
七子山真实固废 (部分降解) 10 0.71
七子山真实固废 (部分降解) 20 0.81 2.5
本次配置固废 (部分降解) 10 0.69 2.8
本次配置固废 (部分降解) 20 0.83 2.4 5.0
Tab.7 Comparison of critical water level of different MSW
[1]   CHEN Y M, ZHAN L T, GAO W. Waste mechanics and sustainable landfilling technology: comparison between HFWC and LFWC MSWs [C]// Proceedings of the 8th International Congress on Environmental Geotechnics. Singapore: Springer, 2019: 3-37.
[2]   YANG R, XU Z, CHAI J. Numerical analysis of three-dimensional infiltration in a municipal solid waste landfill under rainfall [EB/OL]. [2021-05-13]. https://www.researchgate.net/publication/338485805_Numerical_Analysis_of_Three-Dimensional_Infiltration_in_a_Municipal_Solid_Waste_Landfill_under_Rainfall.
[3]   KOERNER R M, SOONG T Y Leachate in landfills: the stability issues[J]. Geotextiles and Geomembranes, 2000, 18 (5): 293- 309
doi: 10.1016/S0266-1144(99)00034-5
[4]   DANG M R, CHAI J R, XU Z G, et al. Soil water characteristic curve test and saturated-unsaturated seepage analysis in Jiangcungou municipal solid waste landfill, China [EB/OL]. [2021-05-13]. https://www.sciencedirect.com/science/article/pii/S0013795218300024.
[5]   YANG R, XU Z, CHAI J. Seepage analysis of a multilayer waste slope considering the spatial and temporal domains of permeability [EB/OL]. [2021-05-13]. https://www.researchgate.net/publication/335400794_Seepage_Analysis_of_a_Multilayer_Waste_Slope_considering_the_Spatial_and_Temporal_Domains_of_Permeability.
[6]   RONG Y, XU Z, CHAI J, et al Permeability test and slope stability analysis of municipal solid waste (MSW) in Jiangcungou Landfill, Shaanxi, China[J]. Journal of the Air and Waste Management Association, 2015, 66 (7): 655- 662
[7]   BLIGHT G Slope failures in municipal solid waste dumps and landfills: a review[J]. Waste Management and Research, 2008, 26 (5): 448- 463
doi: 10.1177/0734242X07087975
[8]   THUSYANTHAN N I, MADABHUSHI S P G, SINGH S Centrifuge modeling of solid waste landfill systems-Part 1: development of a model municipal solid waste[J]. Geotechnical Testing Journal, 2006, 29 (3): 217- 222
[9]   邓学晶. 城市垃圾填埋场振动台模型试验与地震稳定性分析方法研究[D]. 大连: 大连理工大学, 2007.
DENG Xue-jing. Research on shaking table model test and seismic stability analysis method of MSW landfill [D]. Dalian: Dalian University of Technology, 2007.
[10]   高登. 扩建垃圾填埋场中间衬垫变形与稳定性状及其工程控制措施[D]. 杭州: 浙江大学, 2009.
GAO Deng. The expansion of the landfill sites in the middle pad deformation and stability of stability of traits and its engineering control measures [D]. Hangzhou: Zhejiang University, 2009.
[11]   杨春宝. 填埋场变形与稳定离心模型试验研究[D]. 杭州: 浙江大学, 2013: 1-52.
YANG Chun-bao. Centrifuge model tests on deformation and stability of landfill slopes [D]. Hangzhou: Zhejiang University, 2013: 1-52.
[12]   CHEN Y M, LI J C, YANG C B, et al. Centrifuge modeling of municipal solid waste landfill failures induced by rising water levels[J]. Canadian Geotechnical Journal, 2017, 54 (12): 1739- 1751
doi: 10.1139/cgj-2017-0046
[13]   李俊超, 朱斌, 杨春宝, 等 竖向扩建填埋场变形离心模型试验研究[J]. 岩土力学, 2018, 39 (11): 163- 170
LI Jun-chao, ZHU Bin, YANG Chun-bao, et al Centrifugal model tests on stress deformation of plain-type landfills under vertical expansion[J]. Rock and Soil Mechanics, 2018, 39 (11): 163- 170
[14]   YANG R, XU Z, CHAI J A review of characteristics of landfilled municipal solid waste in several countries: physical composition, unit weight, and permeability coefficient[J]. Polish Journal of Environmental Studies, 2018, 27 (6): 2425- 2435
[15]   郭汝阳. 高食物含量垃圾生化与力学行为的研究[D]. 杭州: 浙江大学, 2017.
GUO Ru-yang. Study on the biochemical and mechanical behaviors of high food content MSW [D]. Hangzhou: Zhejiang University, 2017.
[16]   VILAR O M, CARVALHO M F Mechanical properties of municipal solid waste[J]. Journal of Testing and Evaluation, 2004, 32 (6): 438- 449
[17]   冯世进. 城市固体废弃物静动力强度特性及填埋场的稳定性分析[D]. 杭州: 浙江大学, 2005.
FENG Shi-jin. Static and dynamic strength properties of municipal solid waste and stability analyses of landfill [D]. Hangzhou: Zhejiang University, 2005.
[18]   冯世进, 陈云敏, 高丽亚, 等 城市固体废弃物的剪切强度机理及本构关系[J]. 岩土力学, 2007, 28 (12): 2525- 2529
FENG Shi-jin, CHEN Yun-min, GAO Li-ya, et al Shear strength mechanism and constitutive model of municipal solid waste[J]. Rock and Soil Mechanics, 2007, 28 (12): 2525- 2529
[19]   高丽亚, 冯世进, 陈云敏, 等 城市固体废弃物大直径三轴压缩试验研究[J]. 同济大学学报:自然科学版, 2007, 35 (12): 1602- 1606
GAO Li-ya, FENG Shi-jin, CHEN Yun-min, et al Large-scale triaxial compression test for municipal solid waste[J]. Journal of Tongji University: Natural Science, 2007, 35 (12): 1602- 1606
[20]   REDDY K R, HETTIARACHCHI H, PARAKALLA N S, et al Geotechnical properties of fresh municipal solid waste at Orchard Hills Landfill, USA[J]. Waste Management, 2009, 29 (2): 952- 959
doi: 10.1016/j.wasman.2008.05.011
[21]   KARIMPOUR-FARD M, MACHADO S L, SHARIATMADARI N, et al A laboratory study on the MSW mechanical behavior in triaxial apparatus[J]. Waste Management, 2011, 31 (8): 1807- 1819
doi: 10.1016/j.wasman.2011.03.011
[22]   李俊超, 朱斌, 连宝琴, 等 城市固体废弃物应变硬化机制与强度参数确定方法[J]. 岩石力学与工程学报, 2014, 33 (4): 826- 837
LI Jun-chao, ZHU Bin, LIAN Bao-qin, et al Strain-hardening mechanisms and methods determining strength parameters of municipal solid waste[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33 (4): 826- 837
[23]   BABU G L S, LAKSHMIKANTHAN P, SANTHOSH L G Shear strength characteristics of mechanically biologically treated municipal solid waste (MBT-MSW) from Bangalore[J]. Waste Management, 2015, 39 (5): 63- 70
[24]   孙秀丽. 城市固体废弃物变形及强度特性研究[D]. 大连: 大连理工大学, 2007.
SUN Xiu-li. Characterization of deformation and strength for municipal solid waste [D]. Dalian: Dalian University of Technology, 2007.
[25]   孙秀丽, 孔宪京, 邹德高, 等 城市固体废弃物应力-应变模型研究[J]. 岩土工程学报, 2008, 30 (5): 726- 731
SUN Xiu-li, KONG Xian-jing, ZOU De-gao, et al Stress-strain for municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2008, 30 (5): 726- 731
doi: 10.3321/j.issn:1000-4548.2008.05.017
[26]   MACHADO S L, CARVALHO M F, VILAR O M Constitutive model for municipal solid waste[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128 (11): 940- 951
doi: 10.1061/(ASCE)1090-0241(2002)128:11(940)
[1] YOU Hai-hui, MA Zeng-yi, TANG Yi-jun, WANG Yue-lan, ZHENG Lin, YU Zhong, JI Cheng-jun. Soft measurement of heating value of burning municipal solid waste for circulating fluidized bed[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1163-1172.
[2] LIU Rui-mei, LIU Yu-kun, WANG Zhi-hua, LIU Ying-zu, HU Li-hua, SHAO Zhe-ru, CEN Ke-fa. CFD simulation and optimization of secondary air distribution for waste combustion in grate furnace[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 500-507.
[3] LIU Hai long, ZHOU Jia wei, CHEN Yun min, LI Yu chao, ZHAN Liang tong. Evaluation of municipal solid waste landfill stabilization[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(12): 2336-2342.