|
|
Model-free feedforward/feedback control scheme for magnetorheological damper |
Xiao-long WANG(),Hai-feng LV,Jin-ying HUANG,Guang-pu LIU |
School of Mechanical Engineering, North University of China, Taiyuan 030051, China |
|
|
Abstract A novel model-free feedforward/feedback control (MFFFFBC) scheme with simple structure and easy implementation was proposed, in order to achieve the damping force tracking with high reliability and accuracy, as well as to overcome the influence of the model errors and external disturbances on the inverted parametric forward control of the magnetorheological (MR) damper. Taking advantage of the continuously adjustable characteristics of the damping force of the MR fluid dampers, the control signal of the MR damper at the previous moment was sampled and held as the feedforward controller rather than the complex inverse dynamic models. The feedback controller was developed to correct the feedforward control by using the force tracking errors between the desired and actual damping forces, and a saturation function was utilized to constrain the amplitude of the control voltage. Therefore, the high frequency chattering of the control voltage can be avoided. Experimental results show that the proposed controller can command the continuous and smooth control voltage, and the force tracking errors of the viscous damping and friction damping were reduced by 21.98% and 26.64% respectively compared with the classical Heaviside function damper controller.
|
Received: 16 May 2021
Published: 31 May 2022
|
|
Fund: 国家自然科学基金资助项目 (61803348);山西省高等学校科技创新项目(2019L0578);可靠性与环境工程技术国防科技重点实验室开放基金资助项目(202010152) |
磁流变阻尼器无模型前馈/反馈复合控制
为了实现磁流变(MR)阻尼器高可靠性和高精度的阻尼力跟踪控制,克服基于逆向动力学模型的前馈控制易受模型误差和外界干扰影响的问题,提出结构简单、实现容易的无模型前馈/反馈复合控制(MFFFFBC)方法. 利用磁流变液减振器阻尼力连续可调的特点,将磁流变阻尼器控制器前一时刻的控制量进行采样保持作为前馈控制器,以避免建立复杂的磁流变阻尼器逆向动力学模型. 利用期望阻尼力与实际阻尼力之间的跟踪误差信号构建反馈控制器对前馈控制量进行实时修正,利用饱和函数对控制电压进行限幅,以避免控制电压高频振荡. 试验结果表明,在MFFFFBC控制下输出电压连续光滑变化,与经典的基于Heaviside阶跃函数的控制相比,采用本研究所提出的控制策略,黏性阻尼力和摩擦阻尼力的跟踪误差分别减小了21.98%和26.64%.
关键词:
磁流变阻尼器,
动力学模型,
阻尼力跟踪,
无模型前馈/反馈控制(MFFFFBC),
半主动控制
|
|
[1] |
张丽霞, 庞齐齐, 潘福全, 等 磁流变减振器魔术公式模型在悬架控制中的应用[J]. 中国机械工程, 2020, 31 (14): 1659- 1665 ZHANG Li-xia, PANG Qi-qi, PAN Fu-quan, et al Suspension control applications of magnetorheological damper formula model[J]. China Mechanical Engineering, 2020, 31 (14): 1659- 1665
doi: 10.3969/j.issn.1004-132X.2020.14.003
|
|
|
[2] |
陈昭晖, 倪一清 自传感磁流变阻尼器实时阻尼力跟踪控制[J]. 浙江大学学报: 工学版, 2017, 51 (8): 1551- 1558 CHEN Zhao-hui, NI Yi-qing Real-time damping-force tracking control of self-sensing magnetorheological dampers[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (8): 1551- 1558
|
|
|
[3] |
黄腾逸, 周瑾, 徐岩等 基于多场耦合分析的磁流变阻尼器建模与结构参数影响[J]. 浙江大学学报: 工学版, 2020, 54 (10): 2001- 2008 HUANG Teng-yi, ZHOU Jin, XU Yan, et al Modeling of MR damper based on multi-field coupling analysis and influence of structural parameters[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (10): 2001- 2008
|
|
|
[4] |
WANG D H, LIAO W H Semiactive controllers for magnetorheological fluid dampers[J]. Journal of Intelligent Material Systems and Structures, 2005, 16 (11/12): 983- 993
|
|
|
[5] |
STANWAY R, SPROSTON J L, STEVENS N G Nonlinear modelling of an electro-rheological vibration damper[J]. Journal of Electrostatics, 1987, 20 (2): 167- 184
doi: 10.1016/0304-3886(87)90056-8
|
|
|
[6] |
SPENCER JR B F, DYKE S J, SAIN M K, et al Phenomenological model for magnetorheological dampers[J]. Journal of Engineering Mechanics, 1997, 123 (3): 230- 238
doi: 10.1061/(ASCE)0733-9399(1997)123:3(230)
|
|
|
[7] |
BAI X X, CAI F L, CHEN P Resistor-capacitor (RC) operator-based hysteresis model for magnetorheological (MR) dampers[J]. Mechanical Systems and Signal Processing, 2019, 117: 157- 169
doi: 10.1016/j.ymssp.2018.07.050
|
|
|
[8] |
DYKE S J, SPENCER JR B F, SAIN M K, et al Modeling and control of magnetorheological dampers for seismic response reduction[J]. Smart Materials and Structures, 1996, 5 (5): 565- 575
doi: 10.1088/0964-1726/5/5/006
|
|
|
[9] |
SIMS N D, STANWAY R, PEEL D J, et al Controllable viscous damping: an experimental study of an electrorheological long-stroke damper under proportional feedback control[J]. Smart Materials and Structures, 1999, 8 (5): 601
doi: 10.1088/0964-1726/8/5/311
|
|
|
[10] |
WEBER F Robust force tracking control scheme for MR dampers[J]. Structural Control and Health Monitoring, 2015, 22 (12): 1373- 1395
doi: 10.1002/stc.1750
|
|
|
[11] |
CHANG C C, ROSCHKE P Neural network modeling of a magnetorheological damper[J]. Journal of Intelligent Material Systems and Structures, 1998, 9 (9): 755- 764
doi: 10.1177/1045389X9800900908
|
|
|
[12] |
程明. 新型磁流变阻尼器及整星半主动隔振系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. CHEN Ming. Research of a novel magnetorheological damper and semi-active whole-spacecraft vibration isolation [D]. Harbin: Harbin Institute of Technology, 2020.
|
|
|
[13] |
邬家利, 王修勇, 黄佩 磁流变阻尼器力学性能降低原因分析[J]. 湖南科技大学学报:自然科学版, 2020, 35 (2): 51- 55 WU Jia-li, WANG Xiu-yong, HUANG Pei Analysis on mechanical properties reduce of magnetorheological damper[J]. Journal of Hunan University of Science and Technology: Natural Science Edition, 2020, 35 (2): 51- 55
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|