Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (5): 873-878    DOI: 10.3785/j.issn.1008-973X.2022.05.004
    
Model-free feedforward/feedback control scheme for magnetorheological damper
Xiao-long WANG(),Hai-feng LV,Jin-ying HUANG,Guang-pu LIU
School of Mechanical Engineering, North University of China, Taiyuan 030051, China
Download: HTML     PDF(1768KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A novel model-free feedforward/feedback control (MFFFFBC) scheme with simple structure and easy implementation was proposed, in order to achieve the damping force tracking with high reliability and accuracy, as well as to overcome the influence of the model errors and external disturbances on the inverted parametric forward control of the magnetorheological (MR) damper. Taking advantage of the continuously adjustable characteristics of the damping force of the MR fluid dampers, the control signal of the MR damper at the previous moment was sampled and held as the feedforward controller rather than the complex inverse dynamic models. The feedback controller was developed to correct the feedforward control by using the force tracking errors between the desired and actual damping forces, and a saturation function was utilized to constrain the amplitude of the control voltage. Therefore, the high frequency chattering of the control voltage can be avoided. Experimental results show that the proposed controller can command the continuous and smooth control voltage, and the force tracking errors of the viscous damping and friction damping were reduced by 21.98% and 26.64% respectively compared with the classical Heaviside function damper controller.



Key wordsmagnetorheological damper      dynamic model      damping force tracking      model-free feedforward/feedback controller (MFFFFBC)      semi-active control     
Received: 16 May 2021      Published: 31 May 2022
CLC:  TH 13  
Fund:  国家自然科学基金资助项目 (61803348);山西省高等学校科技创新项目(2019L0578);可靠性与环境工程技术国防科技重点实验室开放基金资助项目(202010152)
Cite this article:

Xiao-long WANG,Hai-feng LV,Jin-ying HUANG,Guang-pu LIU. Model-free feedforward/feedback control scheme for magnetorheological damper. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 873-878.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.05.004     OR     https://www.zjujournals.com/eng/Y2022/V56/I5/873


磁流变阻尼器无模型前馈/反馈复合控制

为了实现磁流变(MR)阻尼器高可靠性和高精度的阻尼力跟踪控制,克服基于逆向动力学模型的前馈控制易受模型误差和外界干扰影响的问题,提出结构简单、实现容易的无模型前馈/反馈复合控制(MFFFFBC)方法. 利用磁流变液减振器阻尼力连续可调的特点,将磁流变阻尼器控制器前一时刻的控制量进行采样保持作为前馈控制器,以避免建立复杂的磁流变阻尼器逆向动力学模型. 利用期望阻尼力与实际阻尼力之间的跟踪误差信号构建反馈控制器对前馈控制量进行实时修正,利用饱和函数对控制电压进行限幅,以避免控制电压高频振荡. 试验结果表明,在MFFFFBC控制下输出电压连续光滑变化,与经典的基于Heaviside阶跃函数的控制相比,采用本研究所提出的控制策略,黏性阻尼力和摩擦阻尼力的跟踪误差分别减小了21.98%和26.64%.


关键词: 磁流变阻尼器,  动力学模型,  阻尼力跟踪,  无模型前馈/反馈控制(MFFFFBC),  半主动控制 
Fig.1 Rapid control prototype platform of MR damper
Fig.2 Schematic diagram of MR damper control system
Fig.3 Experimental results of force tracking of viscous damping with HFC
Fig.4 Experimental  results  of force tracking of friction damping with HFC
Fig.5 Experimental  results  of force tracking of viscous damping with MFFFFBC
Fig.6 Experimental  results  of force tracking of friction damping with MFFFFBC
Fig.7 Probability density distribution of damping force tracking error
[1]   张丽霞, 庞齐齐, 潘福全, 等 磁流变减振器魔术公式模型在悬架控制中的应用[J]. 中国机械工程, 2020, 31 (14): 1659- 1665
ZHANG Li-xia, PANG Qi-qi, PAN Fu-quan, et al Suspension control applications of magnetorheological damper formula model[J]. China Mechanical Engineering, 2020, 31 (14): 1659- 1665
doi: 10.3969/j.issn.1004-132X.2020.14.003
[2]   陈昭晖, 倪一清 自传感磁流变阻尼器实时阻尼力跟踪控制[J]. 浙江大学学报: 工学版, 2017, 51 (8): 1551- 1558
CHEN Zhao-hui, NI Yi-qing Real-time damping-force tracking control of self-sensing magnetorheological dampers[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (8): 1551- 1558
[3]   黄腾逸, 周瑾, 徐岩等 基于多场耦合分析的磁流变阻尼器建模与结构参数影响[J]. 浙江大学学报: 工学版, 2020, 54 (10): 2001- 2008
HUANG Teng-yi, ZHOU Jin, XU Yan, et al Modeling of MR damper based on multi-field coupling analysis and influence of structural parameters[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (10): 2001- 2008
[4]   WANG D H, LIAO W H Semiactive controllers for magnetorheological fluid dampers[J]. Journal of Intelligent Material Systems and Structures, 2005, 16 (11/12): 983- 993
[5]   STANWAY R, SPROSTON J L, STEVENS N G Nonlinear modelling of an electro-rheological vibration damper[J]. Journal of Electrostatics, 1987, 20 (2): 167- 184
doi: 10.1016/0304-3886(87)90056-8
[6]   SPENCER JR B F, DYKE S J, SAIN M K, et al Phenomenological model for magnetorheological dampers[J]. Journal of Engineering Mechanics, 1997, 123 (3): 230- 238
doi: 10.1061/(ASCE)0733-9399(1997)123:3(230)
[7]   BAI X X, CAI F L, CHEN P Resistor-capacitor (RC) operator-based hysteresis model for magnetorheological (MR) dampers[J]. Mechanical Systems and Signal Processing, 2019, 117: 157- 169
doi: 10.1016/j.ymssp.2018.07.050
[8]   DYKE S J, SPENCER JR B F, SAIN M K, et al Modeling and control of magnetorheological dampers for seismic response reduction[J]. Smart Materials and Structures, 1996, 5 (5): 565- 575
doi: 10.1088/0964-1726/5/5/006
[9]   SIMS N D, STANWAY R, PEEL D J, et al Controllable viscous damping: an experimental study of an electrorheological long-stroke damper under proportional feedback control[J]. Smart Materials and Structures, 1999, 8 (5): 601
doi: 10.1088/0964-1726/8/5/311
[10]   WEBER F Robust force tracking control scheme for MR dampers[J]. Structural Control and Health Monitoring, 2015, 22 (12): 1373- 1395
doi: 10.1002/stc.1750
[11]   CHANG C C, ROSCHKE P Neural network modeling of a magnetorheological damper[J]. Journal of Intelligent Material Systems and Structures, 1998, 9 (9): 755- 764
doi: 10.1177/1045389X9800900908
[12]   程明. 新型磁流变阻尼器及整星半主动隔振系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
CHEN Ming. Research of a novel magnetorheological damper and semi-active whole-spacecraft vibration isolation [D]. Harbin: Harbin Institute of Technology, 2020.
[13]   邬家利, 王修勇, 黄佩 磁流变阻尼器力学性能降低原因分析[J]. 湖南科技大学学报:自然科学版, 2020, 35 (2): 51- 55
WU Jia-li, WANG Xiu-yong, HUANG Pei Analysis on mechanical properties reduce of magnetorheological damper[J]. Journal of Hunan University of Science and Technology: Natural Science Edition, 2020, 35 (2): 51- 55
[1] Shuai-ling GAO,Jun-qiang XIA,Bo-liang DONG,Mei-rong ZHOU,Jing-ming HOU. Mathematical model for urban flooding with effect of drainage of street inlets[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 590-597.
[2] Tie ZHANG,Liang-liang HU,Yan-biao ZOU. Identification of improved friction model for robot based on hybrid genetic algorithm[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 801-809.
[3] Peng HU,Shao-yi DENG,Zi-xiong ZHAO,Zhi-xian CAO,Huai-han LIU,Zhi-guo HE. Hydro-sediment-morphodynamic modeling of riverbed evolution and calculation of dredging volume[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 733-741.
[4] Ze-sheng WANG,Yan-biao LI,Yi-qin LUO,Peng SUN,Bo CHEN,Hang ZHENG. Dynamic analysis of a 7-DOF redundant and hybrid mechanical arm[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1505-1515.
[5] Teng-yi HUANG,Jin ZHOU,Yan XU,Fan-xu MENG. Modeling of MR damper based on multi-field coupling analysis and influence of structural parameters[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2001-2008.
[6] Ying-long CHEN,Di YAN,Zeng-meng ZHANG,Da-yong NING,Yong-jun GONG. Static and dynamic characteristics of soft unit based on hydraulic straight drive[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1602-1609.
[7] Liang LV,Hong CHEN,Xun GONG,Hai-guang ZHAO,Yun-feng HU. Cooling system modeling and coolant temperature control for gasoline engine[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1119-1129.
[8] FU Xiao-yun, LEI Lei, YANG Gang, LI Bao-ren. Wing parameter configuration and steady motion analysis of water-jet hybrid glider[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(8): 1499-1508.
[9] ZHANG Tie, LIANG Xiao-hong. Kalman filter-based SCARA robot joint torque estimation[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 951-959.
[10] ZHENG Yu-xin, XI Ying, BU Wang-hui, LI Meng-ru. Nonlinear characteristic analysis of 5-degree-of-freedom pure torsional model of RV reducer[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(11): 2098-2109.
[11] LIU You, SHEN Qing, MA Dong-li, YUAN Xiang-jiang. Relationship of wing location and helical motion for underwater glider[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(9): 1760-1769.
[12] CHEN Zhao-hui, NI Yi-qing. Real-time damping-force tracking control of self-sensing magnetorheological dampers[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1551-1558.
[13] NIU Ji qiang, LIANG Xi feng, ZHOU Dan, LIU Tang hong. Equipment cabin aerodynamic performance of electric multiple unit going through tunnel by dynamic model test[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(7): 1258-1265.
[14] XU Huan xiang, YU Xiao li, WANG Lei, FAN Zhi peng, DOU Wen bo, WEI Wei, LI Dao fei. Compressed-air hybrid engine for exhaust energy recovery based on medium mixing[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(7): 1353-1359.
[15] ZHANG Xiao lei, XIA Jun qiang, DENG Shan shan, WANG Zeng hui. Effect of different cross sectional spacing on simulation results of hyperconcentrated floods in Lower Yellow River[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(4): 735-743.