Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (5): 864-872    DOI: 10.3785/j.issn.1008-973X.2022.05.003
    
Design of gearing chain-based manipulator for post-processing
Ding-can JIN1,2(),Jun-xia JIANG1,*(),Jian-liang LAI2,Jie-feng JIN2,De-hui WU3,Chen-lin SHEN3,Wen-bo SONG3
1. School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
2. Hangzhou Jingye Intelligent Technology Limited Company, Hangzhou 310051, China
3. China Nuclear Power Engineering Limited Company, Beijing 100840, China
Download: HTML     PDF(1560KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A new type of design scheme of a gearing chain-based manipulator was proposed, aiming at the existing problems of complex coupling relationship, exposed transmission parts, and low flexibility and low repeat positioning accuracy of the gearing chain-based manipulators. The scheme decoupled the kinematic relationship and simplified the two strongly correlated coupling relationships between the gear sets into one. Based on the simplification of the coupling logic relationship and the optimization of the structure, the design concepts of fully sealed joints and infinite rotation were realized. Then, the control algorithm for the gearing chain-based manipulator was derived through the combination of the kinematics analytical solution formula derivation and the analysis results of gear chain transmission logic coupling of the manipulator. Based on the coupling control algorithm, the motion space was analyzed and the control program of the manipulator was written to realize the flexibility verification and automatic control functions. Besides, test verification was carried out on the test system of the manipulator. Simulation analysis and experimental research result show that the coupling principle, structural design and control algorithm of the new manipulator are feasible and meet the needs of automation applications of manipulators in complex radioactive environments.



Key wordscomplex coupling relationship      manipulator      fully sealed joints      gear chain      radioactive environment     
Received: 19 May 2021      Published: 31 May 2022
CLC:  TL 292  
Fund:  2022年度浙江省“尖兵”“领雁”研发攻关计划项目(2022C01054)
Corresponding Authors: Jun-xia JIANG     E-mail: jindingcan@163.com;junxia.jiang@126.com
Cite this article:

Ding-can JIN,Jun-xia JIANG,Jian-liang LAI,Jie-feng JIN,De-hui WU,Chen-lin SHEN,Wen-bo SONG. Design of gearing chain-based manipulator for post-processing. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 864-872.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.05.003     OR     https://www.zjujournals.com/eng/Y2022/V56/I5/864


后处理全齿轮传动机械臂的设计

针对纯齿轮传动的机械臂存在的耦合关系复杂、传动件外露、灵活度低和重复定位精度低等问题,提出新型全齿轮传动的机械臂设计方案. 该方案通过运动关系解耦,将齿轮组间2种强相关耦合关系简化为1种. 基于耦合逻辑关系简化和结构优化,实现了关节全密封与无限转动的设计理念. 通过机械臂运动学解析解公式推导与全齿轮传动耦合逻辑分析结果的结合,完成适用于全齿轮耦合传动机械臂的控制算法设计. 基于耦合控制算法进行机械臂的运动空间分析与控制程序编写,实现机械臂的灵活性验证与自动控制功能,并在机械臂测试系统上进行试验验证. 仿真和试验结果表明,该机械臂的耦合原理、设计结构和控制算法可行,满足复杂放射性环境下机械臂自动化应用的需求.


关键词: 复杂耦合关系,  机械臂,  关节全密封,  齿轮传动,  放射性环境 
Fig.1 Comparison of structure characteristics of two manipulators
Fig.2 Comparison of transmission principle of manipulators
Fig.3 External integrated power assembly of manipulator for hot cell
Fig.4 Motion transmission structure of manipulator for hot cell
Fig.5 Linkage coordinate system of manipulator for hot cell
i αi?1/(°) ai?1/mm di/mm θi/(°)
1 0 0 ?c θ1
2 90 0 0 θ2?90
3 0 a 0 θ3
4 0 b d θ4?90
5 90 0 ?e θ5
6 ?90 0 ?f θ6
Tab.1 D-H parameter table of manipulator for hot cell
Fig.6 Motion coupling compensation principle of manipulator for hot cell
Fig.7 Contrastive reachable workspace sections of two manipulators
Fig.8 3D reachable workspace contrast of two manipulators
Fig.10 Client architecture and interface of manipulator for hot cell
Fig.9 Control architecture diagram of manipulator for hot cell
Fig.11 Virtual interface of manipulator for hot cell
Fig.12 Key indicators test of manipulator for hot cell
Fig.13 Test methods and results of position accuracy
Fig.14 Deviation of each test point from mean spatial position
[1]   SCHNEIDER M, FROGGATT A, HAZEMANN J, et al. The world nuclear industry status report 2017 [R]. Paris: Mycle Schneider Consulting, 2017.
[2]   瓮松峰 压水堆核电站乏燃料运输辅助设备设计[J]. 核动力工程, 2012, 33 (6): 147- 150
WENG Song-feng Design of the ancillary equipment for spent fuel transport of PWR nuclear power plant[J]. Nuclear Power Engineering, 2012, 33 (6): 147- 150
doi: 10.3969/j.issn.0258-0926.2012.06.033
[3]   李想, 张宏韬 乏燃料后处理产业的市场前景及发展路径[J]. 南方能源建设, 2017, 4 (3): 35- 38
LI Xiang, ZHANG Hong-tao Market prospect and development path for the industry of spent fuel recycle management[J]. Southern Energy Construction, 2017, 4 (3): 35- 38
[4]   辛露, 陈凯 核工业机器人系统中辐照加固技术研究[J]. 科技视界, 2019, 3: 8- 12
XIN Lu, CHEN Kai Research on radiation reinforcement technology in nuclear industry robot system[J]. Science and Technology Vision, 2019, 3: 8- 12
[5]   高松海. 遥控机器人[M]. 北京: 原子能出版社, 1981: 17-30.
[6]   MEASSON Y, DAVID O, LOUVEAU F, et al Technology and control for hydraulic manipulators[J]. Fusion Engineering and Design, 2003, 69 (1–4): 129- 134
doi: 10.1016/S0920-3796(03)00280-1
[7]   GEFFARD F, GARREC P, PIOLAIN G, et al TAO2000 V2 computer-assisted force feedback telemanipulators used as maintenance and production tools at the AREVA NC-La Hague fuel recycling plant[J]. Journal of Field Robotics, 2012, 29 (1): 161- 174
doi: 10.1002/rob.20426
[8]   LEE J K, LEE H J, PARK B S, et al Bridge-transported bilateral master-slave servo manipulator system for remote manipulation in spent nuclear fuel processing plant[J]. Journal of Field Robotics, 2012, 29 (1): 138- 160
doi: 10.1002/rob.20419
[9]   LEE J K, PARK B S, YU S N, et al Crane system with remote actuation mechanism for use in argon compartment in ACPF hot cell[J]. Nuclear Engineering and Design, 2016, 307: 144- 154
doi: 10.1016/j.nucengdes.2016.07.011
[10]   RAY D D, MISHRA J K, SAKRIKAR R V, et al. An evolution of remote handling technology for the Indian nuclear research and industry scenario [C]// International Conference on Advancements in Automation, Robotics and Sensing. Singapore: Springer, 2016: 11-20.
[11]   李贵生, 唐辉, 符勰, 等 中试厂俄罗斯三关节机械手的调试与应用[J]. 研究危害的线性无阈(LNT)模型及目前对模型的评价, 2011, 2: 50- 56
LI Gui-sheng, TANG Hui, FU Xie, et al Debugging and application of russian three-joint manipulator in the pilot plant[J]. Progress Report on China Nuclear Science and Technology, 2011, 2: 50- 56
[12]   张国伟, 李斌, 陈丽惠, 等. 核工业电随动主从机械手控制系统研制[J]. 仪器仪表学报, 2010, 31(8): 245-249.
ZHANG Guo-wei, LI Bin, CHEN Li-hui, et al. Control system of master-slave electric manipulator for nuclear industry[J]. Chinese Journal of Scientific Instrument. 2010, 31(8): 245-249.
[13]   张显鹏, 江常玉 国产主从式机械手电动部分改为遥控的设计[J]. 核动力工程, 2016, 37 (增1): 12- 13
ZHANG Xian-peng, JIANG Chang-yu Design of remote control to replace electric parts of master-slave manipulator[J]. Nuclear Power Engineering, 2016, 37 (增1): 12- 13
[14]   丁渊明, 王宣银 串联机械臂结构优化方法[J]. 浙江大学学报: 工学版, 2010, 44 (12): 2360- 2364
DING Yuan-ming, WANG Xuan-yin Optimization method of serial manipulator structure[J]. Journal of Zhejiang University: Engineering Science, 2010, 44 (12): 2360- 2364
[15]   姜宏超, 刘士荣, 张波涛 六自由度模块化机械臂的逆运动学分析[J]. 浙江大学学报: 工学版, 2010, 44 (7): 1348- 1354
JIANG Hong-chao, LIU Shi-rong, ZHANG Bo-tao Inverse kinematics analysis for 6 degree-of-freedom modular manipulator[J]. Journal of Zhejiang University: Engineering Science, 2010, 44 (7): 1348- 1354
[16]   徐彦, 方琴, 张超, 等 气动软体自折叠机械臂的驱动和负载性能[J]. 浙江大学学报: 工学版, 2020, 54 (2): 398- 405
XU Yan, FANG Qin, ZHANG Chao, et al Driving and load performances of pneumatic soft self-folding manipulators[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (2): 398- 405
[17]   PIEPER D L. The kinematics of manipulators under computer control [D]. California: Stanford University, 1968.
[18]   中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 工业机器人性能规范及其试验方法: GB/T 12642—2013 [S]. 北京: 中国标准出版社, 2013.
[1] Yan XU,Qin FANG,Chao ZHANG,Hong-wei LI. Driving and load performances of pneumatic soft self-folding manipulators[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 398-406.
[2] Ai-guo WU,Shao-hua WU,Na DONG. Nonsingular fast terminal sliding model fuzzy control of robotic manipulators[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 862-871.
[3] Yan-biao LI,Hang ZHENG,Meng-ru XU,Yi-qin LUO,Peng SUN. Multi-target parameters of performance optimization for 5-PSS/UPU parallel mechanism[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 654-663.
[4] QIN Chao, LIANG Xi-feng, LU Jie, PENG Ming, JIN Chao-qi. Trajectory planning and simulation for 7-DoF tomato harvesting manipulator[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(7): 1260-1266.
[5] WAGN Yao-yao, GU Lin-yi, CHEN Bai, WU Hong-tao. Nonsingular terminal sliding mode control of underwater vehicle-manipulator system[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 934-942.
[6] WANG Yang-wei, LAN Bo-wen, LIU Kai, ZHAO Dong-biao. Modeling and experiment of flexible manipulator actuated by shape memory alloy wire[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(4): 628-634.
[7] WANG Wei, WANG Jin, LU Guo-dong. Reliability analysis of manipulator based on fourth-moment estimation[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(1): 1-7.
[8] CHEN Peng, XIANG Ji, WEI Wei. Torque limit constrained control of redundant manipulator based on GWLN method[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(1): 68-74.
[9] QIAN Long hao, HU Shi qiang, YANG Yong sheng. Analytical inverse kinematics algorithm for double-octahedral variable geometry truss manipulators[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(1): 75-81.
[10] LIU Ya nan, NI He peng, ZHANG Cheng rui WANG Yun fei; SUN Hao chun. PC-based open control platform design of integration of machine vision and motion control[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(7): 1381-1386.
[11] JIANG Pei, HUANG Shui hua, WEI Wei, SHAN Cai hua, XIANG Ji. Second order inverse kinematic control method for non redundant manipulator with joint constraints[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(10): 1885-1892.
[12] WU Wen-xiang, ZHU Shi-qiang, JIN Xing-lai. Dynamic Identification for Robot Manipulators Based on
Modified Fourier Series
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(2): 231-237.
[13] CHEN Wei-hai, CHEN Quan-zhu, LIU Rong, ZHANG Jian-bing, CUI Xiang. Homing algorithm analysis of a cable-driven
humanoid-arm manipulator
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(2): 345-352.
[14] JIN Bo, LIU Shan. Iterative learning control based on terminal endpoint tracking error of
flexible manipulator
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(8): 1512-1519.
[15] NI Chu-feng, LIU Shan. Adaptive preshaping vibration control for load-varying
flexible manipulator
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(8): 1520-1525.