Please wait a minute...
J4  2012, Vol. 46 Issue (8): 1512-1519    DOI: 10.3785/j.issn.1008-973X.2012.08.024
    
Iterative learning control based on terminal endpoint tracking error of
flexible manipulator
JIN Bo, LIU Shan
Institute of Industrial control, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

 A new terminal iterative learning control(ILC) approach combined with computed torque method was presented for the flexible manipulator whose motion task was repeatable, in the case of only the elastic link’s endpoint pose was measurable. Firstly, the parameterized representation of each joint control torque was derived based on the simplified flexible manipulator dynamics model. Thereafter, in order to drive the flexible manipulator’s tip to arrive the desired position, the control torque parameters were adjusted by iterative learning, according to the terminal endpoint tracking error. This approach took advantage of the merit that ILC was independent on model, overcame the drawback of computed torque approach which heavily relied on model’s accuracy. The iterative learning of the parameters was mainly used to reduce the effect of the model error and the disturbances, at the same time, to enhance the controller’s robustness. The convergence condition of the approach was obtained by theoretical analysis. Simulation and experiment for a real flexible manipulator were presented. Results show that the proposed ILC scheme can overcome the impact of the endpoint error caused by link flexibility and has good control effect.



Published: 23 September 2012
CLC:  TP 241  
Cite this article:

JIN Bo, LIU Shan. Iterative learning control based on terminal endpoint tracking error of
flexible manipulator. J4, 2012, 46(8): 1512-1519.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2012.08.024     OR     http://www.zjujournals.com/eng/Y2012/V46/I8/1512


基于终点时刻末端误差的柔性臂迭代学习控制

针对柔性臂重复运行的情况,在仅能测量运行终点时刻末端位置的条件下,提出一种新的结合计算力矩法的迭代学习控制(ILC)方法.该方法利用柔性臂的简化动力学模型,给出各关节控制力矩的参数化表示;并依据终点时刻柔性臂末端位置的误差,通过迭代学习算法调整控制力矩的参数,实现精确到达预期末端位置的目标.算法利用ILC不依赖模型的特点,弥补计算力矩法需要精确模型的缺陷;参数的迭代学习主要起到消除模型误差和各种干扰的作用,增强算法的鲁棒性.通过理论分析给出所提算法的收敛条件.最后在柔性臂系统上进行仿真及实际试验.结果表明,所提出的ILC算法能够克服连杆柔性对柔性臂末端误差的影响,显示良好的控制效果.

[1] YANG T W, XU W L, HAN J D. Dynamic compensation control of flexible macromicro manipulator systems [J]. IEEE Transactions on Control Systems Technology, 2010, 18(1): 143-151.
[2] ZHANG Y, YANG T W, SUN Z Q. Neuroslidingmode control of flexiblelink manipulators based on singularly perturbed model [J]. Tsinghua Science and Technology, 2009, 14(4): 444-451.

[3] SONG Y M, Li J X, WANG S Y. Adaptive control of flexible redundant manipulators using neural networks [J]. Transactions of Tianjin University, 2006, 12(6): 429-433.
[4] DIAZ I M, PEREIRA E, FELIU V. Concurrent design of multimode input shapers and link dynamics for flexible manipulators [J]. IEEE/ASME Transactions on Mechatronics, 2010, 15(4): 646-651.
[5] HILLSLEY K L, YURKOVICH S. Vibration control of a twolink flexible robot arm [C]∥ Proceedings of the IEEE International Conference on Robotics and Automation. Sacramento: IEEE, 1991, 3: 212-216.
[6] BHAT S P, MIU D K. Pointtopoint positioning of flexible structures using a time domain LQ smoothness constraint [J]. ASME Journal of Dynamics Systems, Measurement and Control, 1992, 114(9): 416-421.
[7] CRAJG J J. Introduction to robotics: mechanics and control [M]. Boston: AddisonWesley, 1986: 290-311.
[8] MEHREZ M W, EIBADAWY A A. Effect of the joint inertia on selection of underactuated control algorithm for flexiblelink manipulators [J]. Mechanism and Machine Theory, 2010, 45(7): 967-980.
[9] ORIOLO G, PANZIERI S, ULIVI G. Cyclic learning control of chainedform systems with application to carlike robots [C]∥ Proceedings of the 13th Triennial World Congress of IFAC. San Francisco: Pergamon, 1996, 1: 187-192.
[10] XU J X, CHEN Y Q, LEE T H, et al. Terminal iterative learning control with an application to RTPCVD thickness control [J]. International Journal of Robust and Nonlinear Control, 2004, 14( 8): 719-739.
[11] 张丽萍,杨富文.迭代学习控制在线性时变系统终端控制问题中的应用研究[J].自动化学报,2005,31(2): 309-313.
ZHANG Liping, YANG Fuwen. Study on the application of iterative learning control to terminal control of linear timevarying systems [J]. Acta Automatica Sinica, 2005, 31(2): 309-313.
[12] 孙明轩,张保健.迭代学习理论[M].北京:国防工业出版社,1995: 272-277.

[1] NI Chu-feng, LIU Shan. Adaptive preshaping vibration control for load-varying
flexible manipulator
[J]. J4, 2012, 46(8): 1520-1525.
[2] ZHONG Cong-wei, XIANG Ji, WEI Wei, ZHANG Yuan-hui, CHEN Peng. Collision detection and safe reaction of manipulator
based on disturbance observer
[J]. J4, 2012, 46(6): 1115-1121.
[3] ZHONG Cong-wei, XIANG Ji, WEI Wei, ZHANG Yuan-hui. Simple nonlinear observer based dynamic LuGre friction compensation[J]. J4, 2012, 46(4): 764-769.
[4] JIANG Hong-Chao, LIU Shi-Rong, ZHANG Bei-Chao. Inverse kinematics analysis for 6 degree-of-freedom modular
manipulator
[J]. J4, 2010, 44(7): 1348-1354.
[5] ZHANG Yu-Nong, XIAO Xiu-Chun, CHEN Yang-Wen, et al. Number determination of hidden-layer nodes for Hermite feed-forward neural network[J]. J4, 2010, 44(2): 271-275.
[6] SHUAI Xin, LI Yan-Jun, TUN Tie-Jun. Real time predictive control algorithm for endpoint trajectory tracking of flexible manipulator[J]. J4, 2010, 44(2): 259-264.