Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Automation technology     
Analytical inverse kinematics algorithm for double-octahedral variable geometry truss manipulators
QIAN Long hao, HU Shi qiang, YANG Yong sheng
School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China
Download:   PDF(2388KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An analytical inverse kinematics (IK) algorithm was proposed in order to obtain fast and accurate IK solution for multi-section double-octahedral variable geometry truss (VGT) manipulator. A rotation matrix was introduced without using Euler angle and Denavit-Hartenberg (D-H) parameters based on VGT manipulator symmetric structure property and mirror transformation matrix. The full IK problem was reduced into sub-problems involving finding the rotation matrices of auxiliary coordinate systems and determining position vector in the auxiliary coordinate system by establishing two auxiliary coordinate systems. A two-section VGT manipulator IK algorithm was given. A simplified kinematic configuration capable of converting multi-section VGT manipulator into a single-section manipulator was given by analyzing two-section VGT manipulator IK solution. The N-section VGT manipulator was equivalent to two-section VGT manipulator. The N-section VGT manipulator IK solution was obtained by using two-section VGT manipulator IK algorithm and the simplified kinematic configuration. Simulation results indicate that the proposed IK algorithm has improved computation speed and accuracy than solutions from Jacobian matrix method. The effectiveness of the algorithm was verified on a VGT manipulator test device.



Published: 01 January 2017
CLC:  TP 241  
Cite this article:

QIAN Long hao, HU Shi qiang, YANG Yong sheng. Analytical inverse kinematics algorithm for double-octahedral variable geometry truss manipulators. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(1): 75-81.


多节双八面体变几何桁架臂逆运动学解析算法

针对多节双八面体变几何桁架臂(VGT)的逆运动学快速准确求解问题,提出逆运动学解析算法. 根据双八面体VGT对称结构和镜像变换矩阵,引入不依赖于欧拉角和DenavitHartenberg (D-H)参数的旋转矩阵. 通过建立2个辅助坐标系,将整体逆运动学问题分解为求解辅助坐标系旋转矩阵子问题和求解辅助坐标系内位置矢量子问题,给出两节双八面体VGT的逆运动学解析算法.通过分析两节VGT逆运动学的解析解,给出可以将多节臂等效为一节臂的简化运动学构型,将N节VGT臂等效为两节双八面体VGT臂.利用两节双八面体VGT臂的逆运动学算法和简化构型,可得N节臂逆运动学解.仿真验证表明,逆运动学解析算法的计算速度和精度优于雅可比矩阵法.在实际双八面体VGT机构上的测试验证了逆运动学算法的有效性.

[1] BATRAM ATILLA. Trajectory Tracking of a redundant hybrid manipulator using a switching control method [J]. World Academy of Science, Engineering and Technology, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 2016, 10(6): 920929.
[2] 吴江,徐礼钜,雷勇.基于神经网络的冗余度二重八面体变几何桁架机器人运动学求解[J].四川大学学报:工程科学版,2000, 32(2):90103.
WU Jiang, XU Liju,LEI Yong. The kinematics ofredundant doubleoctahedron variable geometry truss manipulators based on neural network [J]. Journal of Sichuan University: Engineering Science Edition, 2000, 32(2): 90103.
[3] MACARENO L, AGIRREBEITIA J, ANGULO C, et al. FEM subsystem replacement techniques for strength problems in variable geometry trusses [J]. Finite Elements in Analysis and Design, 2008, 44(6/7): 346357.
[4] ATSUHIKO S, KOSUKE O, MORIO T, et al. Vibration reduction by natural frequency optimization formanipulation of a variable geometry truss [J]. Structural and Multidisciplinary Optimization, 2013, 48(5):939954.
[5] DE Z I O, AGUIRREBEITIA J, AVILES R, et al. A finite element approach to the inverse dynamics andvibrations of variable geometry trusses [J]. Finite Elements in Analysis and Design, 2011, 47(3): 220228.
[6] TONDU B. Closedform redundancy solving of serial chain robots with a weak generalized inverse approach [J]. Robotics and Autonomous Systems, 2015, 74(PB): 360370.
[7] DULEBA I, OPAKA M. A Comparison of jacobianbased methods of inverse kinematics for serial robotmanipulators [J]. International Journal of Applied Mathematics and Computer Science, 2013, 23(2): 373382.
[8] GIORELLI, M, RENDA F, CALISTI M, et al. Learning the inverse kinetics of an octopuslike manipulator in threedimensional space [J]. Bioinspiration and Biomimetics, 2015, 10(3): 113.

[1] Chen-tao MAO,Zhang-wei CHEN,Xiang ZHANG,Hong-fei ZU. Kinematic calibration for robots based on relative accuracy[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2020, 54(7): 1316-1324.
[2] Ai-guo WU,Shao-hua WU,Na DONG. Nonsingular fast terminal sliding model fuzzy control of robotic manipulators[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(5): 862-871.
[3] Zhi-jing LI,Jing-hua YE,Hai-bin WU. Robot collision detection with convolution torque observer and friction compensation[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(3): 427-434.
[4] CHEN Peng, XIANG Ji, WEI Wei. Torque limit constrained control of redundant manipulator based on GWLN method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(1): 68-74.
[5] HUANG Shui hua, JIANG Pei,WEI Wei, XIANG Ji, PENG Yong gang. Attitude pointing control of manipulator based on quaternion[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(1): 173-179.
[6] JIANG Pei, HUANG Shui hua, WEI Wei, SHAN Cai hua, XIANG Ji. Second order inverse kinematic control method for non redundant manipulator with joint constraints[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(10): 1885-1892.
[7] LIU Xiang qi, MENG Zhen, NI Jing, ZHU Ze fei. Trajectory planning algorithm for hydraulic servo manipulator of three freedom[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(9): 1776-1782.
[8] YANG Zhong-liang, TANG Zhi-chuan, CHEN Yu-miao, GAO Zeng-gui. Force-sEMG relations recognition models of forearm exoskeleton for bilateral training[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(12): 2152-2161.
[9] JIN Bo, LIU Shan. Iterative learning control based on terminal endpoint tracking error of
flexible manipulator
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(8): 1512-1519.
[10] NI Chu-feng, LIU Shan. Adaptive preshaping vibration control for load-varying
flexible manipulator
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(8): 1520-1525.
[11] ZHONG Cong-wei, XIANG Ji, WEI Wei, ZHANG Yuan-hui, CHEN Peng. Collision detection and safe reaction of manipulator
based on disturbance observer
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(6): 1115-1121.
[12] ZHONG Cong-wei, XIANG Ji, WEI Wei, ZHANG Yuan-hui. Simple nonlinear observer based dynamic LuGre friction compensation[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(4): 764-769.
[13] JIANG Hong-Chao, LIU Shi-Rong, ZHANG Bei-Chao. Inverse kinematics analysis for 6 degree-of-freedom modular
manipulator
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(7): 1348-1354.
[14] SHUAI Xin, LI Yan-Jun, TUN Tie-Jun. Real time predictive control algorithm for endpoint trajectory tracking of flexible manipulator[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(2): 259-264.
[15] ZHANG Yu-Nong, XIAO Xiu-Chun, CHEN Yang-Wen, et al. Number determination of hidden-layer nodes for Hermite feed-forward neural network[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(2): 271-275.