Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Automation technology     
Torque limit constrained control of redundant manipulator based on GWLN method
CHEN Peng, XIANG Ji, WEI Wei
College of Electrical Engineering,Zhejiang University,Hangzhou 310027, China
Download:   PDF(1155KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A general weighted least norm (GWLN) based algorithm was proposed to solve the torque limit constraint for a redundant manipulator. An auxiliary variable was introduced to consider the Coriolis force and the gravity’s effect in order to eliminate the assumptions made by other algorithms in existence that the manipulator is running slow. The torque command for the planned joint acceleration was kept in the actuators’ output ranges by optimizing the extended variable’s weighted norm during inverse kinematic solution. The validity of the algorithm was demonstrated by a mathematical proof. A simulation of PUMA 560 manipulator in the MATLAB ROBOTIC TOOLBOX shows that the manipulator controlled by the GWLN based method can comply with the joint torque constraint and accomplish the manipulation task. Comparison with the results generated by the null space torque optimization method and the existing weighted norm method shows that the GWLN based method is more effective and stable.



Published: 01 January 2017
CLC:  TP 241  
Cite this article:

CHEN Peng, XIANG Ji, WEI Wei. Torque limit constrained control of redundant manipulator based on GWLN method. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(1): 68-74.


基于GWLN方法的冗余机械臂关节力矩约束控制

针对冗余机械臂受到的关节驱动力矩有限的约束,提出基于广义加权最小范数法(GWLN)的算法.通过引入辅助变量,考虑重力和科里奥利力的影响,排除现有方法对机械臂低速运行的假定.在逆运动学求解时,对扩展变量的加权范数优化,使得规划关节加速度所需的力矩指令保持在驱动器输出范围之内.该算法的有效性通过数学证明得到验证.在MATLAB ROBOTIC TOOLBOX中对PUMA560机械臂的仿真结果证实,基于GWLN方法控制的机械臂在遵循关节力矩约束的同时,准确地完成操作任务.同零空间力矩优化方法及现有加权方法的仿真结果对比显示,基于GWLN方法的控制算法能够更加有效地保证力矩约束,具有更好的稳定性.

[1] KIRCANSKI M, KIRCANSKI N. Resolved rate and acceleration control in the presence of actuator constraints [J]. IEEE Control Systems, 1998, 18(1): 42-47.
[2] HOLLERBACH J M, SUH K C. Redundancy resolution of manipulators through torque optimization [J]. IEEE Journal of Robotics and Automation, 1987, 3(4): 308-316.
[3] LIU S, WANG J. Bicriteria torque optimization ofredundant manipulators based on a simplified dual neural network [C]∥2005 IEEE International Joint Conference on Neural Networks. Montreal: IEEE, 2005:2796-2801.
[4] 熊有伦.机器人学[M].北京:机械工业出版社,1993: 263-266.
[5] ZHAO Z, WU Z, LU J, et al. Dynamic dexterity of redundant manipulators [C]∥ IEEE International Conference on Systems, Man and Cybernetics. Vancouver: IEEE, 1995: 928-933.
[6] 陈伟海.冗余自由度机器人优化控制研究[D].北京:北京航空航天大学, 1996.
CHEN Weihai. Research on control of robot with redundant degree of freedom [D]. Beijing: Beihang University, 1996.
[7] 郭大忠,柳洪义,张威,等.冗余度机器人运动学和动力学同时优化[J].东北大学学报:自然科学版,2008,29(7): 1008-1011.
GUO Dazhong, LI Hongyi, ZHANG Wei, et al. Simultaneously kinematical and dynamical optimizations of redundant robots [J]. Journal of Northeastern University: Natural Science, 2008, 29(7): 1008-1011.
[8] 郭宪,王明辉,李斌,等.基于最小无穷范数的蛇形机器人最优力矩控制[J].机器人, 2014, 36(01): 8-13.
GUO Xian, WANG Minghui, LI Bin, et al. Optimal torque control of a snakelike robot based on the minimum infinity norm [J]. Robot, 2014, 36(01): 8-13.
[9] 闫彩霞,闫楚良,陆震.基于加权矩阵的过驱动并联机构驱动力矩调节法[J].吉林大学学报:工学版,2008,38(5): 1215-1219.
YAN Caixia, YAN Chuliang, LU Zhen. Approach to coordinate driving torque of redundant actuated parallel manipulator based on weighted matrix [J]. Journal of Jilin University: Engineering and Technology Edition, 2008, 38(5): 1215-1219.
[10] 金波,陈诚,李伟.基于能耗优化的六足步行机器人力矩分配[J].浙江大学学报:工学版, 2012, 46(07): 1168-1174.
JIN Bo, CHEN Cheng, LI Wei. Optimization of energyefficient torque distribution for hexapod walking robot [J]. Journal of Zhejiang University: Engineering Science, 2012, 46(07): 1168-1174.
[11] BIANCO C G L, GERELLI O. Trajectory scaling for a manipulator inverse dynamics control subject to generalized force derivative constraints [C]∥International Conference on Intelligent Robots and Systems. St. Louis: IEEE, 2009: 5749-5754.
[12] 陈伟海,武桢,丁希伦,等.冗余度机器人动力学容错控制技术研究[J].北京航空航天大学学报,2000, 26(6): 726-730.
CHEN Weihai, WU Zhen, DING Xilun,et al.Research on fault tolerant control of dynamically redundant manipulators [J]. Journal of Beijing University of Aeronautics And Astronautics, 2000, 26(6): 726-730.
[13] ZHANG Yunong, WANG Jun. A dual neural network for constrained joint torque optimization of kinematically redundant manipulators [J]. IEEE Transactions on Systems Man and Cybernetics Part B, 2002, 32(5):654-662.
[14] FLACCO F, LUCA A D, KHATIB O. Motion control of redundant robots under joint constraints: saturation in the null space [C]∥2012 IEEE International Conference on Robotics and Automation (ICRA). St. Paul: IEEE, 2012: 285-292.
[15] LIEGEOIS A. Automatic supervisory control of the configuration and behavior of multibody mechanisms [J]. IEEE Transactions on Systems Man and Cybernetics, 1977, 7(12): 868-871.
[16] NAKAMURA Y, HANAFUSA H, YOSHIKAWA T. Taskpriority based redundancy control of robot manipulators [J]. International Journal of Robotics Research, 1987, 6(2): 315.
[17] XIANG J, ZHONG C W, WEI W. Generalweighted leastnorm control for redundant manipulators [J]. IEEE Transactions on Robotics, 2010, 26(4):660-669.
[18] 钟琮玮.仿人型乒乓球机械手运动学及动力学控制方法研究[D].杭州:浙江大学, 2011.
ZHONG Congwei. Kinematic and dynamic control of a humanoid pingpong manipulator [D]. Hangzhou: Zhejiang University, 2011.
[19] XIANG J, ZHONG C W, WEI W. A varied weights method for the kinematic control of redundant manipulators with multiple constraints [J]. IEEE Transactions on Robotics, 2012, 28(2): 330-340.
[20] CORKE P. Robotics, vision and control [M]. Berlin: Springer, 2011.

[1] Chen-tao MAO,Zhang-wei CHEN,Xiang ZHANG,Hong-fei ZU. Kinematic calibration for robots based on relative accuracy[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2020, 54(7): 1316-1324.
[2] Ai-guo WU,Shao-hua WU,Na DONG. Nonsingular fast terminal sliding model fuzzy control of robotic manipulators[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(5): 862-871.
[3] Zhi-jing LI,Jing-hua YE,Hai-bin WU. Robot collision detection with convolution torque observer and friction compensation[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(3): 427-434.
[4] QIAN Long hao, HU Shi qiang, YANG Yong sheng. Analytical inverse kinematics algorithm for double-octahedral variable geometry truss manipulators[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(1): 75-81.
[5] HUANG Shui hua, JIANG Pei,WEI Wei, XIANG Ji, PENG Yong gang. Attitude pointing control of manipulator based on quaternion[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(1): 173-179.
[6] JIANG Pei, HUANG Shui hua, WEI Wei, SHAN Cai hua, XIANG Ji. Second order inverse kinematic control method for non redundant manipulator with joint constraints[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(10): 1885-1892.
[7] LIU Xiang qi, MENG Zhen, NI Jing, ZHU Ze fei. Trajectory planning algorithm for hydraulic servo manipulator of three freedom[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(9): 1776-1782.
[8] YANG Zhong-liang, TANG Zhi-chuan, CHEN Yu-miao, GAO Zeng-gui. Force-sEMG relations recognition models of forearm exoskeleton for bilateral training[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(12): 2152-2161.
[9] JIN Bo, LIU Shan. Iterative learning control based on terminal endpoint tracking error of
flexible manipulator
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(8): 1512-1519.
[10] NI Chu-feng, LIU Shan. Adaptive preshaping vibration control for load-varying
flexible manipulator
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(8): 1520-1525.
[11] ZHONG Cong-wei, XIANG Ji, WEI Wei, ZHANG Yuan-hui, CHEN Peng. Collision detection and safe reaction of manipulator
based on disturbance observer
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(6): 1115-1121.
[12] ZHONG Cong-wei, XIANG Ji, WEI Wei, ZHANG Yuan-hui. Simple nonlinear observer based dynamic LuGre friction compensation[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(4): 764-769.
[13] JIANG Hong-Chao, LIU Shi-Rong, ZHANG Bei-Chao. Inverse kinematics analysis for 6 degree-of-freedom modular
manipulator
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(7): 1348-1354.
[14] SHUAI Xin, LI Yan-Jun, TUN Tie-Jun. Real time predictive control algorithm for endpoint trajectory tracking of flexible manipulator[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(2): 259-264.
[15] ZHANG Yu-Nong, XIAO Xiu-Chun, CHEN Yang-Wen, et al. Number determination of hidden-layer nodes for Hermite feed-forward neural network[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(2): 271-275.