Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (3): 579-589    DOI: 10.3785/j.issn.1008-973X.2022.03.017
    
Calculation methods of torsion response and torsion equivalent static wind loading of transmission tower
Guo-hui SHEN1(),Bao-heng LI1,Yong GUO2,Zheng ZHAO3,Feng PAN2
1. Institute of Structural Engineering, Zhejiang University, Hangzhou 310058, China
2. China Energy Engineering Group Zhejiang Electric Power Design Institute Limited Company, Hangzhou 310012, China
3. China Power Engineering Consulting Group East China Electric Power Design Institute Limited Company, Shanghai 200063, China
Download: HTML     PDF(2093KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A theoretical calculating method to deal with the along-line torsion response and torsion equivalent static wind load was proposed aiming to the torsion effect of transmission tower. The influence of different torsion modes and coherence functions on the torsion response was analyzed. Aeroelastic model wind tunnel tests were carried out to justify the theoretical results. The calculating methods of gust loading factors considering both the torsion and translational effects were developed. Results show that calculating results of the along-line torsion responses are coincided well with those of the aeroelastic model tests, indicating the rationality of the proposed methods. The horizontal and vertical coherence functions should both be adopted to obtain the torsion response. When wind blows from the along cross arm direction, the theoretical torsion responses are less than those of the aeroelastic model tests, which is due to the signature turbulence induced by the shielding effect of tower members. The torsion magnified factor (TMF) of tower body is small, whereas the TMF of the cross-arm cannot be ignored in which a factor up to 1.1 can be found.



Key wordstransmission tower      torsion effect      equivalent static wind load      aeroelastic model      long cross arm     
Received: 29 March 2021      Published: 29 March 2022
CLC:  TU 312.1  
Fund:  国家自然科学基金资助项目(51838012, 52178511)
Cite this article:

Guo-hui SHEN,Bao-heng LI,Yong GUO,Zheng ZHAO,Feng PAN. Calculation methods of torsion response and torsion equivalent static wind loading of transmission tower. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 579-589.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.03.017     OR     https://www.zjujournals.com/eng/Y2022/V56/I3/579


输电塔扭转响应和扭转等效风荷载的计算方法

针对输电塔的扭转效应,提出顺线路方向扭转响应和扭转等效风荷载的理论计算方法,分析扭转模态和相干函数对扭转响应的影响,进行气弹模型风洞试验以验证计算结果的准确性,给出同时考虑扭转与平动的风振系数计算公式. 结果表明:所提出顺线路方向扭转响应计算方法与风洞试验结果非常接近,计算方法的准确性得以验证;扭转响应计算中应同时考虑水平向与竖直向的相干函数;顺横担方向来流时的扭转响应理论计算结果小于风洞试验值,原因是此时杆件间的遮挡效应产生特征湍流;塔身的扭转放大系数可忽略,横担的扭转放大系数不可忽略,最大值为1.1.


关键词: 输电塔,  扭转效应,  等效风荷载,  气弹模型,  长横担 
Fig.1 Dimensional layout of T-shaped transmission tower
主材 斜材 辅材
mm
L280×35 L200×18 L140×12
L250×32 L200×16 L140×10
L250×30 L200×14 L90×7
L250×28 L180×16 L80×7
L250×24 L180×14 L80×6
L220×26 L160×14 L75×6
L220×22 L160×12 L75×5
- L160×10 L70×5
- - L63×5
- - L56×5
- - L50×5
- - L50×4
Tab.1 Section of angle steel member of T-type transmission tower
Fig.2 First three-order torsion mode of T-shaped transmission tower
Fig.3 First three-order torsion mode of T-shaped transmission tower cross arm and tower body
Fig.4 Standard deviation of torsion angle of different modes
Fig.5 Standard deviation of torsion angle of different coherence functions
Fig.6 Standard deviation of torsion angle at end of downward cross arm at 0°
Fig.7 Equivalent torsion of T-shaped transmission tower
名称 数值 名称 数值
尺寸相似系数CL 1/40 拉伸刚度相似系数CEA 1/14400
面积相似系数CA 1/1600 频率相似系数Cf 13.33
空气密度相似系数Cρf 1 加速度相似系数Ca 4.44
结构密度相似系数Cρs 1 风速相似系数Cv 1/3
质量相似系数Cm 1/64000 位移相似系数Cy 1/40
Tab.2 Similarity coefficient of aeroelastic model
Fig.8 Aerodynamic model of transmission tower
Fig.9 Schematic diagram of wind direction angle and force coordinate system
Fig.10 B-typed terrain category simulated in wind tunnel
Fig.11 Measure point arrangement for displacement response
振型 nc/Hz nt/Hz ζ
1阶扭转 16.67 16.49 0.019 1
x向一弯 20.40 18.89 0.008 2
y向一弯 23.33 24.07 0.017 8
Tab.3 Modal parameter identification results
Fig.12 Displacement time history of measuring points
Fig.13 Time history of torsion angle of cross arm
Fig.14 Standard deviation of torsion angle at end of downward cross arm at 0°
η/(°) Fsx Fsy Fbx Fby
0 0 Wsb 0 Wsc
45 0.424×
Wsa+Wsb
0.424×
Wsa+Wsb
0.35Wsc 0.7Wsc
60 (0.747Wsa+
0.249Wsb
(0.431Wsa+
0.144Wsb
0.40Wsc 0.55Wsc
90 Wsa 0 0.45Wsc 0
Tab.4 Skewed wind loading distribution factor
Fig.15 Standard deviation of torsion angle of inclined wind downward cross arm end point
Fig.16 Wind vibration coefficient of T-shaped transmission tower
Fig.17 T-shaped transmission tower torsion amplification factor
Fig.18 Wind vibration coefficient of T-shaped transmission tower under 0°wind
[1]   SOLARI G Mathematical model to predict 3-D wind loading on buildings[J]. Journal of Engineering Mechanics, 1985, 111 (2): 254- 276
doi: 10.1061/(ASCE)0733-9399(1985)111:2(254)
[2]   ISYUMOV N, POOLE M Wind induced torque on square and rectangular building shapes[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1983, 13 (1): 183- 196
[3]   梁枢果, 瞿伟廉, 李桂青 高层建筑横风向与扭转风振力计算[J]. 土木工程学报, 1991, 24 (4): 65- 73
LIANG Shu-guo, QU Wei-lian, LI Gui-qing An evaluation of dynamic loads in across-wind direction and torsion on tall buildings[J]. China Civil Engineering Journal, 1991, 24 (4): 65- 73
[4]   LIANG S, LI Q S, LIU S, et al Torsional dynamic wind loads on rectangular tall buildings[J]. Engineering Structures, 2004, 26 (1): 129- 137
doi: 10.1016/j.engstruct.2003.09.004
[5]   MARUKAWA H, OHKUMA T, MOMOMURA Y Across-wind and torsional acceleration of prismatic high rise buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 42 (1/3): 1139- 1150
[6]   TALLIN A, ELLINGWOOD B Wind induced lateral-torsional motion of buildings[J]. Journal of Structural Engineering, 1985, 111 (10): 2197- 2213
doi: 10.1061/(ASCE)0733-9445(1985)111:10(2197)
[7]   邹良浩, 梁枢果, 汪大海, 等 基于风洞试验的对称截面高层建筑三维等效静力风荷载研究[J]. 建筑结构学报, 2012, 33 (11): 27- 35
ZOU Liang-hao, LIANG Shu-guo, WANG Da-hai, et al Analysis of three dimensional equivalent static wind loads on symmetrical high-rise buildings based on wind tunnel tests[J]. Journal of Building Structures, 2012, 33 (11): 27- 35
[8]   段松涛, 吴海洋, 包永忠, 等 特高压直流输电塔风振响应参与模态分析[J]. 土木工程与管理学报, 2013, 30 (3): 29- 32
DUAN Song-tao, WU Hai-yang, BAO Yong-zhong, et al Participant mode analysis of wind-induced responses of HVDC power transmission tower[J]. Journal of Civil Engineering and Management, 2013, 30 (3): 29- 32
[9]   黄凤华, 张大长, 李布辉, 等 ±1 100 kV特高压直流输电线铁塔风致响应及风振系数研究[J]. 钢结构, 2017, 32 (7): 49- 53
HUANG Feng-hua, ZHANG Da-chang, LI Bu-hui, et al Wind-induced dynamic response and vibration coefficient of ±1 100 kilovolt extra-high voltage direct current transmission line tower[J]. Steel Construction, 2017, 32 (7): 49- 53
[10]   楼文娟, 段志勇, 金晓华, 等 风速水平空间相关性对长横担输电塔风效应的影响[J]. 振动与冲击, 2014, 33 (13): 63- 66
LOU Wen-juan, DUAN Zhi-yong, JIN Xiao-hua, et al Influence of turbulent transverse space correlation on wind induced responses of long cantilever transmission towers[J]. Journal of Vibration and Shock, 2014, 33 (13): 63- 66
[11]   翁文涛. 特高压T型输电塔的风荷载和风致响应研究[D]. 杭州: 浙江大学, 2019: 58-93.
WENG Wen-tao. Study on wind loading and wind-induced response of UHV T-shaped transmission tower [D]. Hangzhou: Zhejiang University, 2019: 58-93.
[12]   赵建, 叶震, 余亮, 等 ±1 100 kV特高压长悬臂输电铁塔风振特性研究[J]. 工业建筑, 2019, 49 (4): 8- 14
ZHAO Jian, YE Zhen, YU Liang, et al Wind-induced dynamic response and vibration coefficient of ±1 100 kilovolt DC UHV transmission tower with long cantilever[J]. Industrial Construction, 2019, 49 (4): 8- 14
[13]   杨子烨, 宋雪祺, 邓洪洲 ±1 100 kV特高压输电塔风振响应频域分析[J]. 中南大学学报:自然科学版, 2020, 51 (8): 2121- 2131
YANG Zi-ye, SONG Xue-qi, DENG Hong-zhou Frequency domain analysis of wind-induced response of ±1 100 kV ultra-high voltage (UHV) transmission tower[J]. Journal of Central South University: Science and Technology, 2020, 51 (8): 2121- 2131
[14]   张骞, 叶震, 蔡建国, 等 特高压长悬臂输电塔与输电塔-线耦合体系的风振特性[J]. 东南大学学报:自然科学版, 2019, 49 (1): 1- 8
ZHANG Qian, YE Zhen, CAI Jian-guo, et al Wind-induced response of UHV long cantilever transmission tower and tower-line coupled system[J]. Journal of Southeast University: Natural Science Edition, 2019, 49 (1): 1- 8
[15]   张爽, 孙清, 吴彤, 等 ±1 100 kV输电塔风振响应及风振系数研究[J]. 特种结构, 2018, 35 (4): 52- 59
Zhang Shuang, Sun Qing, Wu Tong, et al Research on wind-induced response analysis and vibration coefficient of ±1 100 kV transmission tower[J]. Special Structures, 2018, 35 (4): 52- 59
doi: 10.3969/j.issn.1001-3598.2018.04.009
[16]   聂建波, 潘峰, 沈建国, 等 ±800 kV特高压T型长横担输电塔风振特性研究[J]. 特种结构, 2013, 30 (1): 48- 52
NIE Jian-bo, PAN Feng, SHEN Jian-guo, et al Study on wind-induced vibration characteristics of ± 800 kV UHV T shaped long cross-arm transmission tower[J]. Special Structures, 2013, 30 (1): 48- 52
[17]   杨子烨, 邓洪洲 长横担输电塔扭转向等效静力风荷载[J]. 振动与冲击, 2021, 40 (3): 125- 132
YANG Zi-ye, DENG Hong-zhou Equivalent static wind load in torsional direction of long cross arm transmission tower[J]. Journal of Vibration and Shock, 2021, 40 (3): 125- 132
[18]   黄本才. 结构抗风分析原理及应用[M]. 上海: 同济大学出版社, 2001: 59-68.
[19]   YANG C Y, SAUNDERS H Random vibration of structures[J]. Journal of Vibration and Acoustics, 1989, 111 (1): 116- 117
doi: 10.1115/1.3269806
[20]   国家能源局. 架空输电线路荷载规范: DL/T 5551—2018 [S]. 北京: 中国计划出版社, 2018: 10-26.
[1] Rong BIAN,Wen-juan LOU,Hang LI,Xia-shuang ZHAO,Li-gang ZHANG. Aerodynamic characteristics of steel tubular transmission tower in different flow fields[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 910-916.
[2] LOU Wen-juan, LIANG Hong-chao, BIAN Rong. Apply member loads to calculate wind load shape coefficient of angle-made-transmission tower[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(9): 1631-1637.
[3] QIAN Cheng, SHEN Guo-hui, GUO Yong, XING Yue-long. Influence of semi-rigid connections on wind-induced responses of transmission towers[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1082-1089.
[4] GUI Long-hui, XIE Ji-ming, LIN Ying-zi, ZHANG Hong-wei. Aeroelastic model study of cantilever skywalk bridge[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(11): 2121-2129.
[5] LOU Wen juan, LUO Gang, HU Wen kan. Calculation method for equivalent static wind loads and wind load adjustment coefficients for transmission lines[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(11): 2120-2127.
[6] KE Shi-tang, WANG Tong-guang, CHEN Shao-lin, GE Yao-jun. Wind-induced responses and equivalent static wind load of large wind turbine system[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(4): 686-692.
[7] SHEN Guo-hui, XIANG Guo-tong, XING Yue-long, GUO Yong, SUN Bing-nan. Experimental investigation of steel latticed towers with cylindrical members based on force balance tests under two wind flows[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(4): 704-710.
[8] LOU Wen-Juan,YANG Lun,CHEN Yong,YAN Dong. Study on mechanical features of transmission tower cross arm under static tension of iced conductor[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(11): 1917-1925.
[9] LOU Wen-juan, JIANG Xiong, XIA Liang, JIN Xiao-hua, WANG Zhen-hua. Wind-induced weak parts and reinforcement methods of long cross-armed transmission tower[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(10): 1798-1784.
[10] SHEN Guo-hui, WANG Ning-bo, SUN Bing-nan, LOU Wen-juan. Calculation of wind-induced responses and equivalent static wind loads
of high-rise buildings based on wind tunnel tests
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(3): 448-453.
[11] SHEN Guo-hui, SUN Bing-nan, YE Yin, LOU Wen-juan. Broken wire analysis and broken wire load calculation of
high voltage transmission tower
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(4): 678-683.
[12] WANG Cuan, LOU Wen-Juan, LI Hong-Nan, et al. Wind-induced dynamic response of high-rise transmission tower under downburst wind load[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(8): 1520-1525.