Hydraulic Engineering |
|
|
|
|
Urban flood simulation based on porosity and local time step |
Wei LI(),Ji-yu ZOU,Peng HU*() |
Ocean College, Zhejiang University, Hangzhou 310058, China |
|
|
Abstract A well-balanced shallow water model of anisotropic porosity was developed under the framework of finite volume method, in order to increase the computational efficiency of urban flood simulation. The high-resolution Harten-Latex-van Leer-Contact (HLLC) approximate Riemann solver which could automatically capture shockwaves and discontinuities was used for flux computation, together with the local time step technique for time updating. The application to classic idealized urban floods shows that the represent model can accurately reproduce the complex hydrodynamics of urban floods and increase the computational efficiency markedly: the anisotropic porosity method reduces the requirement of local grid refining around obstructions and increases the computational efficiency by an order of magnitude; the local time step technique allows each grid to use a relatively large time step and reduces the temporal iteration, and further saves the computation cost by about two to three times.
|
Received: 11 April 2019
Published: 05 March 2020
|
|
Corresponding Authors:
Peng HU
E-mail: lw05@zju.edu.cn;pengphu@zju.edu.cn
|
基于孔隙率和局部时间步长的城市洪水模拟
为提高城市洪水模拟的计算效率,在有限体积法框架下,基于能自动捕捉激波、间断的高精度Harten-Latex-van Leer-Contact (HLLC)近似黎曼算子,并结合局部时间步长技术,建立满足静水平衡特性的各向异性孔隙率浅水模型. 经典城市洪水模拟结果表明,所建立的模型能够精确模拟洪水传播过程的复杂流动现象,并能显著提升计算效率:孔隙率方法降低了建筑物周围网格加密的要求,能使计算效率提升一个数量级;局部时间步长技术让每个网格采用尽可能大的时间步长,减少了循环次数,可进一步提升计算效率约2.0~3.0倍.
关键词:
各向异性孔隙率,
浅水方程,
城市洪水模拟,
局部时间步长,
有限体积法
|
|
[1] |
DE ALMEIDA G A M, BATES P D Applicability of the local inertial approximation of the shallow water equations to flood modeling[J]. Water Resources Research, 2013, 49 (8): 4833- 4844
doi: 10.1002/wrcr.20366
|
|
|
[2] |
COSTABILE P, COSTANZO C, MACCHIONE F Performances and limitations of the diffusive approximation of the 2-D shallow water equations for flood simulation in urban and rural areas[J]. Applied Numerical Mathematics, 2017, 116: 141- 156
doi: 10.1016/j.apnum.2016.07.003
|
|
|
[3] |
CHEN A S, EVANS B, DJORDJEVIC S, et al A coarse-grid approach to representing building blockage effects in 2D urban flood modelling[J]. Journal of Hydrology, 2012, 426 (Suppl. C): 1- 16
|
|
|
[4] |
GUINOT V Multiple porosity shallow water models for macroscopic modelling of urban floods[J]. Advances in Water Resources, 2012, 37 (1): 40- 72
|
|
|
[5] |
GUINOT V, DELENNE C Macroscopic modelling of urban floods[J]. La Houille Blanche, 2015, (6): 19- 25
|
|
|
[6] |
VELICKOVIC M, ZECH Y, SOARES-FRAZAO S Steady-flow experiments in urban areas and anisotropic porosity model[J]. Journal of Hydraulic Research, 2017, 55 (1): 85- 100
doi: 10.1080/00221686.2016.1238013
|
|
|
[7] |
贺治国, 翁浩轩, 高冠, 等 植被群影响下动床洪水数值模拟研究[J]. 应用基础与工程科学学报, 2017, 25 (1): 17- 27 HE Zhi-guo, WENG Hao-xuan, GAO Guan, et al Numerical simulation of dam-break flood over mobile and vegetated beds[J]. Journal of Basic Science and Engineering, 2017, 25 (1): 17- 27
|
|
|
[8] |
周浩澜, 陈洋波 城市化地面二维浅水模拟[J]. 水科学进展, 2011, 22: 407- 412 ZHOU Hao-lan, CHEN Yang-bo 2D shallow water simulation for urbanized areas[J]. Advances in Water Science, 2011, 22: 407- 412
|
|
|
[9] |
COZZOLINO L, PEPE V, CIMORELLI L, et al The solution of the dam-break problem in the Porous Shallow water Equations[J]. Advances in Water Resources, 2018, 114: 83- 101
doi: 10.1016/j.advwatres.2018.01.026
|
|
|
[10] |
FERRARI A, VACONDIO R, DAZZI S, et al A 1D - 2D shallow water equations solver for discontinuous porosity field based on a generalized riemann problem[J]. Advances in Water Resources, 2017, 107
|
|
|
[11] |
HE Z, WU T, WENG H, et al Numerical simulation of dam-break flow and bed change considering the vegetation effects[J]. International Journal of Sediment Research, 2017, 32 (1): 105- 120
doi: 10.1016/j.ijsrc.2015.04.004
|
|
|
[12] |
SOARES-FRAZAO S, LHOMME J, GUINOT V, et al Two-dimensional shallow-water model with porosity for urban flood modelling[J]. Journal of Hydraulic Research, 2008, 46 (1): 45- 64
doi: 10.1080/00221686.2008.9521842
|
|
|
[13] |
FINAUD-GUYOT P, DELENNE C, LHOMME J, et al An approximate-state Riemann solver for the two-dimensional shallow water equations with porosity[J]. International Journal for Numerical Methods in Fluids, 2010, 62 (12): 1299- 1331
|
|
|
[14] |
SANDERS B F, SCHUBERT J E, GALLEGOS H A Integral formulation of shallow-water equations with anisotropic porosity for urban flood modeling[J]. Journal of Hydrology, 2008, 362 (1-2): 19- 38
doi: 10.1016/j.jhydrol.2008.08.009
|
|
|
[15] |
OZGEN I, ZHAO J H, LIANG D F, et al Urban flood modeling using shallow water equations with depth-dependent anisotropic porosity[J]. Journal of Hydrology, 2016, 541: 1165- 1184
doi: 10.1016/j.jhydrol.2016.08.025
|
|
|
[16] |
KIM B, SANDERS B F, FAMIGLIETTI J S, et al Urban flood modeling with porous shallow-water equations: a case study of model errors in the presence of anisotropic porosity[J]. Journal of Hydrology, 2015, 523: 680- 692
doi: 10.1016/j.jhydrol.2015.01.059
|
|
|
[17] |
GUINOT V, SANDERS B F, SCHUBERT J E Dual integral porosity shallow water model for urban flood modelling[J]. Advances in Water Resources, 2017, 103: 16- 31
doi: 10.1016/j.advwatres.2017.02.009
|
|
|
[18] |
ZHOU J G, CAUSON D M, MINGHAM C G, et al The surface gradient method for the treatment of source terms in the shallow-water equations[J]. Journal of Computational Physics, 2001, 168 (1): 1- 25
doi: 10.1006/jcph.2000.6670
|
|
|
[19] |
SANDERS B F Integration of a shallow water model with a local time step[J]. Journal of Hydraulic Research, 2008, 46 (4): 466- 475
doi: 10.3826/jhr.2008.3243
|
|
|
[20] |
HU P, LEI Y, HAN J, et al Computationally efficient modeling of hydro-sediment-morphodynamic processes using a hybrid local time step/global maximum time step[J]. Advances in Water Resources, 2019, 127: 26- 38
doi: 10.1016/j.advwatres.2019.03.006
|
|
|
[21] |
胡鹏, 韩健健, 雷云龙 基于局部分级时间步长方法的水沙耦合数学模拟[J]. 浙江大学学报: 工学版, 2019, 53 (4): 743- 752 HU Peng, HAN Jian-jian, LEI Yun-long Coupled modeling of sediment-laden flows based on local-time-step approach[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (4): 743- 752
|
|
|
[22] |
HU P, HAN J, LI W, et al Numerical investigation of a sandbar formation and evolution in a tide-dominated estuary using a hydro-morphodynamic model[J]. Coastal Engineering Journal, 2018, 60 (4): 466- 483
doi: 10.1080/21664250.2018.1529263
|
|
|
[23] |
NEPF H M Drag, turbulence, and diffusion in flow through emergent vegetation[J]. Water Resources Research, 1999, 35 (2): 479- 489
doi: 10.1029/1998WR900069
|
|
|
[24] |
YUE Z, LIU H, LI Y, et al A well-balanced and fully coupled noncapacity model for dam-break flooding[J]. Mathematical Problems in Engineering, 2015, 1- 13
|
|
|
[25] |
AUDUSSE E, BOUCHUT F, BRISTEAU M, et al A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows[J]. Journal on Scientific Computing, 2004, 25 (6): 2050- 2065
doi: 10.1137/S1064827503431090
|
|
|
[26] |
HOU J M, SIMONS F, MAHGOUB M, et al A robust well-balanced model on unstructured grids for shallow water flows with wetting and drying over complex topography[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 257: 126- 149
doi: 10.1016/j.cma.2013.01.015
|
|
|
[27] |
SOARES-FRAZAO S, ZECH Y Dam-break flow through an idealised city[J]. Journal of Hydraulic Research, 2008, 46 (5): 648- 658
doi: 10.3826/jhr.2008.3164
|
|
|
[28] |
OZGEN I, LIANG D F, HINKELMANN R Shallow water equations with depth-dependent anisotropic porosity for subgrid-scale topography[J]. Applied Mathematical Modelling, 2016, 40 (17/18): 7447- 7473
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|