The GDS large-scale triaxial test system was upgraded by the temperature control module and the circulating fluid heating mode was used to achieve precise control and monitoring of the sample temperature, in order to study the temperature effect on the static shear characteristics of road base coarse-grained filling materials. The crushed stone filler of a roadbed quarry in Zhejiang Province was selected for saturated drainage shear test, and the static characteristics of road base filling materials under different low confining pressures and temperatures were analyzed. The relationship between the dilatancy parameter and the confining pressure was established based on experimental data. The von Wolffersdorff hypoplastic model was improved to reflect the dilatancy of the road base filling materials under low confining pressure. Constitutive relation for the influence of temperature on dilatancy and strength was proposed based on the improved model, and a hypoplastic model for road base coarse-grained materials accounting for temperature effect was established. Research show that increasing temperature makes road base filling materials soft, the peak strength of the road base filling materials will decrease with the increase of temperature, and the higher the confining pressure, the more obvious the peak strength attenuation with temperature. However, the temperature change will basically not affect the residual strength of the roadbed filler. The established model can simulate the nonlinear relationship between strength and confining pressure of road base coarse-grained materials, accurately reflect the shear characteristics under different temperatures, and can be used as an effective tool for simulating the shear characteristics of coarse-grained soil under temperature effects.
Shao-xiang CHEN,Zhi-gang CAO,Xing-chi YE,Yuan-qiang CAI,Qi ZHANG. Hypoplastic model for road base coarse-grained materials accounting for temperature effect. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 938-946, 976.
Fig.1Large-scale triaxial test system under temperature control upgrading
参数
数值
参数
数值
ρa/(g?cm?3)
2.72
Cc
2.88
dmax /mm
20.00
ρd,max /(g?cm?3)
2.23
d50 /mm
5.76
wop /%
5.6
Cu
22.70
Dc /%
95.0
Tab.1Basic physical parameters of crushed tuff
Fig.2Gradation curves of testing materials
试验序号
$\sigma_3'$/kPa
θ/℃
试验序号
$\sigma_3' $/kPa
θ/℃
1
20
5
4
20
55
2
40
5
5
40
55
3
60
5
6
60
55
Tab.2Temperature triaxial shear test cases
Fig.3Three-dimensional stress path of mean effective stress-deviatoric stress-temperature
Fig.4Improved model simulations and experimental results of relationship between peak strength and confining pressure under different temperatures
Fig.5Axial strain induced by temperature under 20 kPa confining pressure
Fig.6Influence mechanism of temperature on dilatancy and strength of dense granular soils
Fig.7Comparison of simulated and experimental results of relationship between strength-related parameters and confining pressure
模型参数
数值
模型参数
数值
${\varphi _{\rm{c}}}$/(°)
45
$ {k_1} $
?0.027
$ n $
0.6
$ {b_1} $
0.076
$ {h_{\rm{s}}} $/MPa
75
$ {k_2} $
0.013
${e_{\rm{i}}}_{\rm{0}}$
0.50
$ {b_2} $
0.023
${e_{\rm{d}}}_{\rm{0}}$
0.22
${k_{{\rm{vt}}} }$/(℃?1)
2.5×10?5
${e_{{\rm{c0}}} }$
0.45
$ {k_3} $
25.455
$\;\beta$
4
$ {b_3} $
42.237
Tab.3Hypoplastic model parameters of crushed tuff
Fig.8Simulation of road base filling materials with different values of residual strength control coefficient
Fig.9Comparison of simulated and experimental results of deviatoric stress-axial strain curves of road base filling materials under different confining pressures and temperatures
Fig.10Comparison of simulated and experimental results of volumetric strain-axial strain curves of road base filling materials under different confining pressures and temperatures
[1]
CAMPANELLA R G, MITCHELL J K Influence of temperature variations on soil behavior[J]. ASCE Soil Mechanics and Foundation Division Journal, 1968, 94 (3): 709- 734
doi: 10.1061/JSFEAQ.0001136
[2]
LIU H, LIU H, XIAO Y, et al Effects of temperature on the shear strength of saturated sand[J]. Soils and Foundations, 2018, 58 (6): 1326- 1338
doi: 10.1016/j.sandf.2018.07.010
[3]
MCCARTNEY J S, KHOSRAVI A Field-monitoring system for suction and temperature profiles under pavements[J]. Journal of Performance of Constructed Facilities, 2013, 27 (6): 818- 825
doi: 10.1061/(ASCE)CF.1943-5509.0000362
[4]
JIN M S, LEE K W, KOVACS W D Seasonal variation of resilient modulus of subgrade soils[J]. Journal of Transportation Engineering, 1994, 120 (4): 603- 616
doi: 10.1061/(ASCE)0733-947X(1994)120:4(603)
[5]
LALOUI L Thermo-mechanical behaviour of soils[J]. French Revue of Civil Engineering, 2001, 6 (5): 809- 843
[6]
CEKEREVAC C, LALOUI L Experimental study of thermal effects on the mechanical behaviour of a clay[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28 (3): 209- 228
doi: 10.1002/nag.332
[7]
DE BRUYN D, THIMUS J F The influence of temperature on mechanical characteristics of Boom clay: the results of an initial laboratory programme[J]. Engineering Geology, 1996, 41 (1): 117- 126
[8]
ABUEL-NAGA H M, BERGADO D T, RAMANA G V, et al Experimental evaluation of engineering behavior of soft bangkok clay under elevated temperature[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132 (7): 902- 910
doi: 10.1061/(ASCE)1090-0241(2006)132:7(902)
[9]
KUNTIWATTANAKUL P, TOWHATA I, OHISHI K, et al Temperature effects on undrained shear characteristics of clay[J]. Soils and Foundations, 1995, 35 (1): 147- 162
doi: 10.3208/sandf1972.35.147
[10]
UCHAIPICHAT A, KHALILI N Experimental investigation of thermo-hydro-mechanical behaviour of an unsaturated silt[J]. Géotechnique, 2009, 59 (4): 339- 353
[11]
HUECKEL T, PELLEGRINI R, OLMO C D A constitutive study of thermo-elasto-plasticity of deep carbonatic clays[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1998, 22 (7): 549- 574
doi: 10.1002/(SICI)1096-9853(199807)22:7<549::AID-NAG927>3.0.CO;2-R
[12]
HUECKEL T, BALDI G Thermoplasticity of saturated clays: experimental constitutive study[J]. Journal of Geotechnical Engineering, 1990, 116 (12): 1778- 1796
doi: 10.1061/(ASCE)0733-9410(1990)116:12(1778)
[13]
LINGNAU B E, GRAHAM J, YARECHEWSKI D, et al Effects of temperature on strength and compressibility of sand-bentonite buffer[J]. Engineering Geology, 1996, 41 (1): 103- 115
[14]
TANAKA N, GRAHAM J, CRILLY T Stress-strain behaviour of reconstituted illitic clay at different temperatures[J]. Engineering Geology, 1997, 47 (4): 339- 350
doi: 10.1016/S0013-7952(96)00113-5
[15]
ABUEL-NAGA H M, BERGADO D T, BOUAZZA A, et al Thermomechanical model for saturated clays[J]. Géotechnique, 2009, 59 (3): 273- 278
[16]
林乃山 宁波轻轨沿线不同深度土体温度变化规律观测研究[J]. 中国勘察设计, 2013, (5): 82- 85 LIN Nai-shan Observation and research on the variation of soil temperature at different depths along Ningbo light rail[J]. China Engineering and Consulting, 2013, (5): 82- 85
doi: 10.3969/j.issn.1006-9607.2013.05.004
[17]
王铁行, 刘自成, 岳彩坤 浅层黄土温度场数值分析[J]. 西安建筑科技大学学报:自然科学版, 2007, (4): 463- 467 WANG Tie-hang, LIU Zi-cheng, YUE Cai-kun Thermal regime in shallow soil strata in loess plateau[J]. Journal of Xi'an University of Architecture and Technology: Natural Science Edition, 2007, (4): 463- 467
[18]
PAN Y, COULIBALY J B, ROTTA LORIA A F Thermally induced deformation of coarse-grained soils under nearly zero vertical stress[J]. Géotechnique Letters, 2020, 10 (4): 486- 491
[19]
NG C W W, WANG S H, ZHOU C Volume change behaviour of saturated sand under thermal cycles[J]. Géotechnique Letters, 2016, 6 (2): 124- 131
[20]
何绍衡, 夏唐代, 李玲玲, 等 温度效应对珊瑚礁砂抗剪强度和颗粒破碎演化特性的影响研究[J]. 岩石力学与工程学报, 2019, 38 (12): 2535- 2549 HE Shao-heng, XIA Tang-dai, LI Ling-ling, et al Influence of temperature effect on shear strength and particle breaking evolution characteristics of coral reef sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38 (12): 2535- 2549
[21]
HUECKEL T, BORSETTO M Thermoplasticity of saturated soils and shales: constitutive equations[J]. Journal of Geotechnical Engineering, 1990, 116 (12): 1765- 1777
doi: 10.1061/(ASCE)0733-9410(1990)116:12(1765)
[22]
YAO Y P, ZHOU A N Non-isothermal unified hardening model: a thermo-elasto-plastic model for clays[J]. Géotechnique, 2013, 63 (15): 1328- 1345
[23]
ZHOU C, NG C W W A thermomechanical model for saturated soil at small and large strains[J]. Canadian Geotechnical Journal, 2015, 52 (8): 1101- 1110
doi: 10.1139/cgj-2014-0229
[24]
MAŠÍN D, KHALILI N A thermo-mechanical model for variably saturated soils based on hypoplasticity[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36 (12): 1461- 1485
doi: 10.1002/nag.1058
[25]
VON WOLFFERSDORFF P A A hypoplastic relation for granular materials with a predefined limit state surface[J]. Mechanics of Cohesive-frictional Materials, 1996, 1 (3): 251- 271
doi: 10.1002/(SICI)1099-1484(199607)1:3<251::AID-CFM13>3.0.CO;2-3
FUENTES W, WICHTMANN T, GIL M, et al ISA-Hypoplasticity accounting for cyclic mobility effects for liquefaction analysis[J]. Acta Geotechnica, 2020, 15 (6): 1513- 1531
doi: 10.1007/s11440-019-00846-2
[29]
GUDEHUS G A comprehensive constitutive equation for granular materials[J]. Soils and Foundations, 1996, 36 (1): 1- 12
doi: 10.3208/sandf.36.1
[30]
BAUER E Calibration of a comprehensive hypoplastic model for granular materials[J]. Soils and Foundations, 1996, 36 (1): 13- 26
doi: 10.3208/sandf.36.13
[31]
HERLE I, GUDEHUS G Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies[J]. Mechanics of Cohesive-frictional Materials, 1999, 4 (5): 461- 486
doi: 10.1002/(SICI)1099-1484(199909)4:5<461::AID-CFM71>3.0.CO;2-P
[32]
WICHTMANN T, TRIANTAFYLLIDIS T An experimental database for the development, calibration and verification of constitutive models for sand with focus to cyclic loading: part I. tests with monotonic loading and stress cycles[J]. Acta Geotechnica, 2016, 11 (4): 739- 761
doi: 10.1007/s11440-015-0402-z
[33]
陈靖宇. 公路路基填料长期动力特性试验研究与累积应变模型[D]. 杭州: 浙江大学, 2018. CHEN Jing-yu. Experimental study and accumulated strain model on long-term cyclic behavior of road base fillings [D]. Hangzhou: Zhejiang University, 2018.
[34]
凌华, 傅华, 韩华强 粗粒土强度和变形的级配影响试验研究[J]. 岩土工程学报, 2017, 39 (Suppl.1): 12- 16 LING Hua, FU Hua, HAN Hua-qiang Experimental study on effects of gradation on strength and deformation of coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39 (Suppl.1): 12- 16
[35]
YIN Z, HICHER P, DANO C, et al Modeling mechanical behavior of very coarse granular materials[J]. Journal of Engineering Mechanics, 2017, 143 (1): C4013006
[36]
XIAO Y, LIU H, CHEN Y, et al Strength and deformation of rockfill material based on large-scale triaxial compression tests. I: influences of density and pressure[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140 (12): 04014070
doi: 10.1061/(ASCE)GT.1943-5606.0001176
[37]
LIAO D, YANG Z X Hypoplastic modeling of anisotropic sand behavior accounting for fabric evolution under monotonic and cyclic loading[J]. Acta Geotechnica, 2021, 16 (7): 2003- 2029
doi: 10.1007/s11440-020-01127-z
[38]
YANG Z X, LIAO D, XU T T A hypoplastic model for granular soils incorporating anisotropic critical state theory[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44 (6): 723- 748
doi: 10.1002/nag.3025
[39]
刘国明, 陈泽钦, 吴乐海 堆石料Gudehus-Bauer亚塑性本构模型改进及参数确定方法[J]. 岩土力学, 2018, 39 (3): 823- 830 LIU Guo-ming, CHEN Ze-qin, WU Yue-hai Improvement of Gudehus-Bauer hypoplastic constitutive model for rockfill materials and the determination of model parameters[J]. Rock and Soil Mechanics, 2018, 39 (3): 823- 830
[40]
LIU H, LIU H, XIAO Y, et al Influence of temperature on the volume change behavior of saturated sand[J]. Geotechnical Testing Journal, 2018, 41 (4): 747- 758