Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (9): 1658-1665    DOI: 10.3785/j.issn.1008-973X.2020.09.001
    
Along-line wind loads and distribution patterns of transmission lines
Guo-hui SHEN1(),Yu-nan BAO1,Yong GUO2,Gang SONG2,Yi-wen WANG2
1. Institute of Structural Engineering, Zhejiang University, Hangzhou 310058, China
2. Electric Power Design Institute of Zhejiang Province, Hangzhou 310007, China
Download: HTML     PDF(1482KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Wind tunnel tests and finite element analysis methods were employed to obtain along-line wind loads and distribution patterns of transmission lines. The testing facilities were developed to measure the wind forces of curved transmission lines in a wind tunnel. Along-line wind load proportional coefficients of transmission lines with two typical rise-span ratios were obtained. Three distribution patterns of along-line wind loads of transmission lines were compared through two cases. Finally, suggestions for along-line wind load and distribution patterns of transmission lines were given. Results show that only the Chinese codes specify the wind loads of transmission line in the along-line direction. The along-line wind load proportional coefficients of two transmission lines with rise-span ratios of 4% and 8% are both less than 0.15, and a recommended value of 0.25 in the Chinese codes is conservative. The distribution patterns based on projection heights and body shape coefficients of cables regulated in the Chinese code are almost the same. The distribution pattern based on arc lengths results in larger vertical and horizontal displacements compared with the other two patterns, with an increasing value of about 12%. The along-line wind load proportional coefficient is suggested to be 0.10 for regular or 0.12 for long-span transmission lines. And the distribution pattern of along-line wind loads is suggested to be distributed by projection heights.



Key wordstransmission line      wind loads      along-line direction      wind tunnel test      finite element analysis     
Received: 14 August 2019      Published: 22 September 2020
CLC:  TU 312  
Cite this article:

Guo-hui SHEN,Yu-nan BAO,Yong GUO,Gang SONG,Yi-wen WANG. Along-line wind loads and distribution patterns of transmission lines. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1658-1665.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.09.001     OR     http://www.zjujournals.com/eng/Y2020/V54/I9/1658


输电线顺线路方向风荷载及分配模式

采用风洞试验,结合有限元分析方法,研究输电线顺线路方向的风荷载和作用模式;研发弧形输电线风荷载的风洞试验测试装置;获得2种典型垂跨比输电线的顺线路方向比例系数;通过2个实例对比输电线顺线路方向风荷载的3种分配模式,给出输电线顺线路方向风荷载和分配模式的建议. 研究表明,各国规范中只有中国规范给出了顺线路方向风荷载的规定;垂跨比为4%和8%的输电线顺线向荷载比例系数均低于0.15,中国规范取值(0.25)偏保守;按投影高度和按规范中拉索体型系数的分配结果基本一致;按弧长分配会比按其他2种方法获得更大的竖向位移和水平位移,增大幅度约为12%;顺线路方向的比例系数建议取0.10(常规输电线)或0.12(大跨越输电线);顺线路方向的风荷载建议采用按投影高度进行分配.


关键词: 输电线,  风荷载,  顺线路方向,  风洞试验,  有限元分析 
θ/(°) X Y θ/(°) X Y
0 0 0.25WX 60 0.75WX 0
45 0.50WX 0.15WX 90 WX 0
Tab.1 Wind loading of transmission line under skew angle
规范 体型系数 面积 横线路分配系数 WY
DL/T 5551-2018 1.0或1.1 dLp sin2 θ 0.25WX
DL/T 5154-2012 1.1或1.2 dLp sin2 θ 0.25WX
IEC60826-2003 1.0 dL sin2 θ
ASCE74-2009 1.0 A cos2 ψ
EN 50341-1: 2001 1.2 dL cos2 ?
JEC127-1979 1.2 A sin2 θ
Tab.2 Calculation methods of wind loading of transmission line in criteria of various countries
Fig.1 Diagram for wind load direction of transmission line
Fig.2 Experimental setup of transmission line specimen
Fig.3 Drag coefficients of curve shaped transmission line under uniform incoming flow
Fig.4 Along-line proportional coefficients obtained from tests
Fig.5 Averaged distribution by arc lengths
Fig.6 Distribution pattern by vertical projection heights
γ/(°) μsX μsY γ/(°) μsX μsY
0 0.00 0.00 50 0.60 0.40
10 0.05 0.05 60 0.85 0.40
20 0.10 0.10 70 1.10 0.3
30 0.20 0.25 80 1.20 0.20
40 0.35 0.40 90 1.25 0.00
Tab.3 Body shape coefficient of cable
Fig.7 Definition of wind load direction of cable in loading codes
Fig.8 Diagram for distribution using body shape coefficient of cable regulated by loading code
参数 数值 单位
弧垂 12.53 m
档距 300 m
运行张力 18 150.2 N
垂跨比 4.18 %
弹性模量 62 000 MPa
截面积 666.55 mm2
直径 33.6 mm
单位长度重量 20.168 4 N/m
Tab.4 Design parameters of 300 m span transmission line
Fig.9 Distribution of wind load along line direction of 300 m span transmission line
Fig.10 Comparision of displacement of 300 m span transmission line
Fig.11 Comparision of axial force of 300 m span transmission line
方法 FN / N uY / mm uZ / mm
按弧长分配 18 170.2 26.7 10.7
按投影高度分配 18 173.1 23.4 8.7
按拉索体型系数分配 18 173.1 23.5 8.7
Tab.5 Calculation results of wind load in mid-span of 300 mspan transmission line
参数 数值 单位
弧垂 207.39 m
档距 2654 m
垂跨比 7.81 %
运行张力 10 1083 N
弹性模量 141 300.0 MPa
截面积 376.62 Mm2
直径 25.2 mm
单位长度重量 23.620 3 N/m
运行张力 101 083 N
Tab.6 Design parameters of 2 654 m span transmission line
Fig.12 Distribution of wind load along line direction of 2654 m span transmission line
Fig.13 Comparision of displacement of 2654 m span transmission line
Fig.14 Comparision of axial force of 2654 m span transmission line
方法 FN / N uY / mm uZ / mm
按弧长分配 101 113.7 978.8 157.4
按投影高度分配 101 104.5 858.7 106.1
按拉索体型系数分配 101 105.6 861.8 107.2
Tab.7 Calculation results of wind load results of mid-span of 2 654 m span transmission line
[1]   姜宏玺 角度风作用下的线条风荷载的计算问题[J]. 电力勘测设计, 2009, 6: 54- 57
JIANG Hong-xi Calculation of string wind load in angle wind[J]. Electric Power Survey and Design, 2009, 6: 54- 57
doi: 10.3969/j.issn.1671-9913.2009.06.014
[2]   潘峰, 高志林, 王轶文, 等 360°风作用下线条风荷载分配系数特性[J]. 中国电力, 2014, 47 (10): 64- 70
PAN Feng, GAO Zhi-lin, WANG Yi-wen, et al Study on distribution coefficient characteristics of wind load with 0-360 angles for power transmission lines[J]. Electric Power, 2014, 47 (10): 64- 70
[3]   DL/T 5551-2018. 架空输电线路荷载规范[S]. 北京: 中国计划出版社, 2018.
[4]   DL/T 5154-2012. 架空送电线路杆塔结构设计技术规定[S]. 北京: 中国电力出版社, 2012.
[5]   IEC 60826-2003. Design criteria of overhead transmission lines [S]. Geneve: International Electro-technical Commission, 2003.
[6]   ASCE 74 -2009. Guidelines for electrical transmission line structure loading [S]. Virginia: American Society of Civil Engineers, 2009.
[7]   EN 50341-1: 2001. Overhead electrical lines exceeding AC 45kV [S]. London: British Standard Institute, 2001.
[8]   JEC-127 -1979. Design standards on structures for transmissions [S]. Tokyo: Japanese Electric Committee, 1979.
[9]   GB50009-2012. 建筑结构荷载规范[S]. 北京: 中国建筑工业出版社, 2012.
[10]   张盈哲, 廖宗高, 谢强 输电线路设计规范中风荷载计算方法的比较[J]. 电力建设, 2013, 34 (7): 57- 62
ZHANG Ying-zhe, LIAO Zong-gao, XIE Qiang Comparison of wind load calculation standards for power transmission lines[J]. Electric Power, 2013, 34 (7): 57- 62
doi: 10.3969/j.issn.1000-7229.2013.07.011
[11]   徐彬, 冯衡, 曾德森, 等 国内外输电线路设计规范风荷载比较[J]. 华中电力, 2012, 2: 68- 78
XU Bin, FENG Heng, ZENG De-sen, et al Comparison on design codes of transmission line for wind load at home and abroad[J]. Central China Electric Power, 2012, 2: 68- 78
doi: 10.3969/j.issn.1006-6519.2012.01.019
[12]   李敏生, 王振华 中国输电线路规范的风荷载计算比较[J]. 南方能源建设, 2018, 3: 89- 93
LI Min-sheng, WANG Zhen-hua Comparison of wind load calculation for China transmission codes[J]. Southern Energy Construction, 2018, 3: 89- 93
[13]   楼文娟, 李天昊, 吕中宾, 等 多分裂子导线气动力系数风洞试验研究[J]. 空气动力学学报, 2015, 33 (6): 787- 792
LOU Wen-juan, LI Tian-hao, LV Zhong-bin, et al Wind tunnel test on aerodynamic coefficients o multi-bundled sub-conductors[J]. ACTA AERODYNAMICA SINICA, 2015, 33 (6): 787- 792
[14]   谢强, 谢超, 管政 特高压8分裂导线风荷载干扰效应风洞试验[J]. 高电压技术, 2011, 37 (9): 2126- 2132
XIE Qiang, XIE Chao, GUAN Zheng Wind tunnel test on the interference effect on wind load of UHV 8-bundled conductors[J]. High Voltage Engineering, 2011, 37 (9): 2126- 2132
[1] Kai-jun LOU,Feng YU,Tang-dai XIA,Jian MA. Stability analysis of diaphragm wall retained structure in clay[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1697-1705.
[2] Zheng ZHANG,Hao ZHANG,Hao CHAI,Hua-ping WU,Shao-fei JIANG. Design and performance analysis of variable stiffness multi-stable composite laminate structure[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1341-1346.
[3] Yong CHEN,Yong-quan LI,Chong-lei XIE,Kuang-liang QIAN,Ye-sheng ZHANG,Peng-yun CHENG,Xuan-zuo YE. Pushover test study of masonry structure restrained by steel-tube-bundle shear walls[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 499-511.
[4] Li-guo WANG,Xu-dong SHAO,Jun-hui CAO,Yu-bao CHEN,Guang HE,Yang WANG. Performance of steel-ultrathin UHPC composite bridge deck based on ultra-short headed studs[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2027-2037.
[5] Shui-guang TONG,Jia-zhi MIAO,Zhe-ming TONG,Shun HE,Shu-feng XIANG,Xiang-hui SHUAI. Finite element analysis and optimization for static and dynamic characteristics of diesel forklift frame[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1637-1646.
[6] Hao-su LIU,Jun-qing LEI. Identification of three-component coefficients of double deck truss girder for long-span bridge[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1092-1100.
[7] Shao-heng HE,Tang-dai XIA,Lian-xiang LI,Bing-qi YU,Ze-yong LIU. Influence of groundwater seepage on deformation of foundation pits with suspended impervious curtains[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 713-723.
[8] Wen-qiang DAI,Xu ZHENG,Zhi-yong HAO,Yi QIU. Prediction of high-speed train interior noise using energy finite element analysis[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2396-2403.
[9] Rui-kai YE,Hao WU,Xing-xing DONG. Fault identification of double-circuit transmission lines on same tower based on measuring wave impedance[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2412-2422.
[10] Ming-feng HUANG,He-kai YE,Wen-juan LOU,Xuan-tao SUN,Jian-yun YE. Wind-induced vibration and fatigue analysis of long span lattice structures considering distribution of wind speed and direction[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1916-1926.
[11] LOU Wen-juan, LIANG Hong-chao, BIAN Rong. Apply member loads to calculate wind load shape coefficient of angle-made-transmission tower[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(9): 1631-1637.
[12] SU Guo-dong, SUN Ling-ling, WANG Xiang, WANG Zun-feng, ZHANG Sheng-zhou, LEI Yu-chao. Design of 126.6-128.1 GHz fundamental voltage control oscillator[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(9): 1788-1795.
[13] LIU Bo-kai, GAO Hong-li, WU Ying-chuan, ZHANG Xiao-qing, LI Shi-chao. New suspension force measuring system in impulse combustion wind tunnel[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(4): 619-627.
[14] SHANZheng-bo, WANG Hui-fang, LIN Guan-qiang, HE Ben-teng. Identification of vulnerable lines in power grid consideringrelative probability and consequence of line outage[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(3): 560-568.
[15] XIA Yong-qiang, XIAO Nan. Initial rotational stiffness formula of semi-rigid joint with T-stub in beam-to-column connection[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1935-1942.