Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (10): 2027-2037    DOI: 10.3785/j.issn.1008-973X.2020.10.021
    
Performance of steel-ultrathin UHPC composite bridge deck based on ultra-short headed studs
Li-guo WANG1,2(),Xu-dong SHAO1,2,*(),Jun-hui CAO1,2,Yu-bao CHEN1,2,Guang HE1,2,Yang WANG1,2
1. School of Civil Engineering, Hunan University, Changsha 410082, China
2. Hunan Provincial Laboratory for Wind Engineering and Bridge Engineering, Hunan University, Changsha 410082, China
Download: HTML     PDF(1877KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A new steel-ultrathin UHPC lightweight composite deck (named as new LWCD for short) was proposed by using ultra-short headed studs in order to meet the demanding requirements in retrofitting and strengthening steel deck systems for long-span flexible bridges. The experimental tests were performed for the new LWCD via steel-ultrathin UHPC composite slab specimens, and the influence of key design parameters on the anti-cracking behavior of the specimens was analyzed. The test results show that the cracks widened approximately linearly with the increasing load when the maximum crack width was less than 0.15 mm. The maximum crack width in UHPC rapidly increased when the steel reinforcement yielded. The nominal cracking stress of UHPC was significantly affected by the reinforcement ratio and rebar diameter. Different methods of predicting the crack width in UHPC were compared based on the test results, and the proposed formula for calculating the crack width of steel-ultrathin UHPC composite slab was determined. Global and local finite element (FE) analyses were performed based on a long-span suspension bridge to validate the feasibility of the proposed new LWCD. The analysis results show that the self-weight of the new LWCD is comparable to that of the original 60 mm asphalt overlay. The internal forces in main cables and suspenders are increased less than 3.0%. The stress ranges in typical fatigue-prone details of the orthotropic steel deck (OSD) are reduced by 10.1%-52.0%, and the stress ranges in the OSD are all below the corresponding fatigue strengths (under 2 million cycles). The maximum tensile stress in UHPC caused by design loads was 8.4 MPa, much less than the nominal cracking strength obtained in the experimental test.



Key wordsbridge engineering      ultra-thin system      finite element analysis      light-weight composite bridge deck      fatigue     
Received: 30 December 2019      Published: 28 October 2020
CLC:  U 443  
Corresponding Authors: Xu-dong SHAO     E-mail: wlg120524@163.com;shaoxd@vip.163.com
Cite this article:

Li-guo WANG,Xu-dong SHAO,Jun-hui CAO,Yu-bao CHEN,Guang HE,Yang WANG. Performance of steel-ultrathin UHPC composite bridge deck based on ultra-short headed studs. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2027-2037.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.10.021     OR     http://www.zjujournals.com/eng/Y2020/V54/I10/2027


基于超短栓钉的钢-超薄UHPC组合桥面性能

为了满足对自重敏感的大跨桥梁钢桥面的翻修与加固需求,提出采用超短栓钉作为连接件的钢-超薄UHPC轻型组合桥面结构(简称“新超薄体系”). 通过钢-超薄UHPC组合板负弯矩试验,研究关键设计参数对超薄UHPC层抗裂性能的影响. 试验结果表明:当UHPC最大裂缝宽度小于0.15 mm时,裂缝宽度的增长近似呈线性,在钢筋屈服以后,裂缝宽度迅速增大;配筋率和钢筋直径对名义开裂应力的影响较大. 基于试验结果,分析已有的裂缝宽度计算公式,确定钢-超薄UHPC组合板裂缝宽度的建议计算公式. 以某特大跨径悬索桥为工程背景,进行整体和局部有限元分析,论证了方案应用于实际工程的可行性. 计算结果表明:钢-超薄UHPC组合桥面的自重与常规60 mm厚的钢桥面铺装基本持平,主缆和吊索内力变化小于3.0%;钢桥面(OSD)各典型疲劳细节的应力幅值降低了10.1%~52.0%,且均小于200万次疲劳强度;UHPC层中最大拉应力为8.4 MPa,远小于试验得到的名义开裂应力.


关键词: 桥梁工程,  超薄体系,  有限元分析,  轻型组合桥面,  疲劳 
构件编号 ${h_{\rm{s}}}$/mm $\phi $/mm $d$/mm $\rho $/%
S12-33-6 12 6 33 2.4
S12-33-8 12 8 33 4.3
S12-50-8 12 8 50 2.9
S12-50-10 12 10 50 4.5
S20-33-6 20 6 33 2.4
S20-33-8 20 8 33 4.3
S20-50-8 20 8 50 2.9
Tab.1 Design parameters of steel-ultrathin UHPC composite slabs
Fig.1 Structural diagram of S12-33-8
Fig.2 Diagram of steel strain gauge arrangement
Fig.3 Loading diagram for bending test of composite slabs
Fig.4 Load-deflection curve of composite slabs
构件编号 ${F_{\rm{e}}}$/kN ${F_{{\rm{cr}}}}$/kN ${F_{\rm{u}}}$/kN
S12-33-6 7.3 16.1 37.7
S12-33-8 7.8 19.4 47.9
S12-50-8 7.6 16.1 39.0
S12-50-10 8.3 17.2 47.2
S20-33-6 8.0 23.5 88.0
S20-33-8 9.4 29.1 97.8
S20-50-8 8.7 23.4 88.8
Tab.2 Bending test results of composite slabs
Fig.5 Final cracks distribution of composite slabs
Fig.6 Load-maximum crack width curve of composite slabs
Fig.7 Conversion diagram of cross section
试件编号 ${F_{{\rm{cr}}}}$/kN ${\sigma _{\rm{c}}}$/MPa
S12-33-6 16.1 25.3
S12-33-8 19.4 30.5
S12-50-8 16.1 25.9
S12-50-10 17.2 27.2
S20-33-6 23.5 27.5
S20-33-8 29.1 33.0
S20-50-8 23.4 27.3
Tab.3 Calculation results of nominal cracking stress
Fig.8 Steel stress of partial components
Fig.9 
Fig.9 Contrast diagram of measured and calculated crack width
铺装方案 铺装结构 $\gamma_{\rm{c} }$/(kN·m?3
方案1(原铺装) 60 mm 环氧沥青铺装层 环氧沥青:24
方案2-1 35 mm UHPC+15 mm TPO TPO:20
方案2-2 35 mm UHPC+30 mm SMA SMA:24
方案3 45 mm UHPC+30 mm SMA UHPC:27
Tab.4 Pavement scheme of global calculation
Fig.10 Midas global finite element model
铺装方案 ${F_{\rm{C}}}$/kN $P_{F_{\rm{C}} }$/% ${F_{\rm{S}}}$/kN $P_{F_{\rm{S}} }$/%
方案1 187696.6 ? 1030.7 ?
方案2-1 184338.7 ?1.8 1003.5 ?2.6
方案2-2 191561.9 2.1 1062.1 3.0
方案3 196179.7 4.5 1099.7 6.7
Tab.5 Midas global calculation results
Fig.11 Typical fatigue damage of steel deck
细节编号 $\Delta6_{\rm{c} }$1)/MPa 评定方法
注:1)表中的疲劳强度已考虑疲劳抗力分项系数.
细节① 60.9 名义应力法
细节② 60.9 名义应力法
细节③ 69.6 名义应力法
细节④ 69.6 名义应力法
细节⑤ 60.9 名义应力法
细节⑥ 95.7 名义应力法
Tab.6 Fatigue strength of steel deck joint
Fig.12 Segmental model of steel box girder
Fig.13 Key location mesh refinement in finite element model
Fig.14 Fatigue load——standard fatigue model Ⅲ
Fig.15 Static load——standard static model
Fig.16 Loading mode of local calculation
细节编号 $\sigma_{{\rm{max}}}^{\rm{s}}$/MPa $\Delta\sigma_{\rm{c} }$/
MPa
$P_{\rm{\sigma}}$/
%
纯钢梁 超薄体系
细节① 65.2 31.3 60.9 52.0
细节② 62.0 40.8 60.9 34.2
细节③ 83.3 64.7 69.6 22.3
细节④ 49.0 38.81 69.6 20.8
细节⑤ 43.7 39.3 60.9 10.1
细节⑥ 43.4 36.7 95.7 15.4
Tab.7 Stress amplitude of fatigue details
应力方向 ${\sigma _{\rm{g}}}$/MPa ${\sigma _{\rm{L}}}$/MPa $\sigma_{{\rm{max}}} $/MPa
顺桥向 2.8 6.6 9.4
横桥向 ? 8.4 8.4
Tab.8 Calculation results of UHPC stress
[1]   王春生, 冯亚成 正交异性钢桥面板的疲劳研究综述[J]. 钢结构, 2009, 24 (9): 10- 13
WANG Chun-sheng, FENG Ya-cheng Review of fatigue research for orthotropic steel bridge decks[J]. Steel Construction, 2009, 24 (9): 10- 13
doi: 10.3969/j.issn.1007-9963.2009.09.003
[2]   FISHER J W, BARSOM J M Evaluation of cracking in the rib-to-deck welds of the Bronx-Whitestone Bridge[J]. Journal of Bridge Engineering, 2016, 21 (3): 04015065.1- 04015065.10
[3]   ROMAN W Empirical design rules for effective utilization of orthotropic decks[J]. Journal of Bridge Engineering, 2014, 19 (2): 152- 158
doi: 10.1061/(ASCE)BE.1943-5592.0000462
[4]   邵旭东. 钢-超高性能混凝土轻型组合桥梁结构[M]. 北京: 人民交通出版社, 2015.
[5]   CAO J H, SHAO X D, ZHANG Z, et al Retrofit of an orthotropic steel deck with compact reinforced reactive powder concrete[J]. Structure and Infrastructure Engineering, 2015, 12 (3): 1- 19
[6]   丁楠. 超高性能混凝土对轻型组合桥面结构疲劳寿命的影响研究[D]. 长沙: 湖南大学, 2014.
DING Nan. Study on influence of ultra-high performance concrete on light-weighted composite bridge deck [D]. Changsha: Hunan University, 2014.
[7]   SHAO X D, YI D, HUANG Z, et al Basic performance of the composite deck system composed of orthotropic steel deck and ultra-thin RPC layer[J]. Journal of Bridge Engineering, 2013, 18 (5): 417- 428
doi: 10.1061/(ASCE)BE.1943-5592.0000348
[8]   黄卫, 刘振清 大跨径钢桥面铺装设计理论与方法研究[J]. 土木工程学报, 2005, (1): 51- 59
HUANG Wei, LIU Zhen-qing Research on theory and method of long-span steel bridges deck surfacing design[J]. China Civil Engineering Journal, 2005, (1): 51- 59
doi: 10.3321/j.issn:1000-131X.2005.01.007
[9]   SHAO X D, QU W T, CAO J H Static and fatigue properties of the Steel-UHPC lightweight composite bridge deck with large U ribs[J]. Journal of Constructional Steel Research, 2018, 148: 491- 507
doi: 10.1016/j.jcsr.2018.05.011
[10]   邵旭东, 张松涛, 张良, 等 钢-超薄UHPC层轻型组合桥面性能研究[J]. 重庆交通大学学报: 自然科学版, 2016, 35 (1): 22- 27
SHAO Xu-dong, ZHANG Song-tao, ZHANG Liang, et al Performance of light-type composite bridge dec-k system with steel and ultra-thin UHPC layer[J]. Journal of Chongqing Jiaotong University: Natural Science, 2016, 35 (1): 22- 27
[11]   国家质量监督检验检疫总局. 电弧螺柱焊用圆柱头焊钉: GB/T 10433-2002 [S]. 北京: 中国标准出版社, 2002: 1-5.
[12]   吴冲. 现代钢桥[M]. 北京: 人民交通出版社, 2006.
[13]   邵旭东, 罗军, 曹君辉, 等 钢-UHPC轻型组合桥面结构试验及裂缝宽度计算研究[J]. 土木工程学报, 2019, 52 (3): 61- 75
SHAO Xu-dong, LUO Jun, CAO Jun-hui, et al Experimental study and crack width calculation of steel-UHPC lightweight composite deck structure[J]. China Civil Engineering Journal, 2019, 52 (3): 61- 75
[14]   罗军, 邵旭东, 曹君辉, 等 钢-超高性能混凝土组合板开裂荷载正交试验及计算方法[J]. 浙江大学学报:工学版, 2020, 54 (5): 909- 920
LUO Jun, SHAO Xu-dong, CAO Jun-hui, et al Orthogonal test and calculation method of cracking load of steel-ultra-high performance concrete composite specimen[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (5): 909- 920
[15]   李文光, 邵旭东, 方恒, 等 钢-UHPC组合板受弯性能的试验研究[J]. 土木工程学报, 2015, 48 (11): 93- 102
LI Wen-guang, SHAO Xu-dong, FANG Heng, et al Experimental study on flexural behavior of steel-UHPC composite slabs[J]. China Civil Engineering Journal, 2015, 48 (11): 93- 102
[16]   AFGC, SETRA. Ultra-high performance fiber-reinforced concrete (UHPFRC) [S]. Paris: AFGC& SETRA Working Group, 2016.
[17]   RAFIEE J. Computer modeling and investigation on the steel corrosion in sacked ultra high performance concrete [M]. Kassel: Kassel University Press, 2012.
[18]   Model code for concrete structures: MC2010 [S]. Switzerland: The International Federation for Structural Concrete, 2012.
[19]   邵旭东, 曲宛桐, 曹君辉, 等 带大U肋的轻型组合桥面板基本力学性能[J]. 中国公路学报, 2018, 31 (8): 94- 103
SHAO Xu-dong, QU Wan-tong, CAO Jun-hui, et al Fundamental mechanical performance of lightweight composite bridge deck with large U-ribs[J]. China Journal of Highway and Transport, 2018, 31 (8): 94- 103
doi: 10.3969/j.issn.1001-7372.2018.08.010
[20]   詹健, 邵旭东, 曲宛桐, 等 钢-STC轻型组合桥面结构多参数分析[J]. 公路交通科技, 2018, 35 (5): 73- 81
ZHAN Jian, SHAO Xu-dong, QU Wan-tong, et al Multi-parametric analysis on steel-STC lightweight composite bridge deck[J]. Journal of Highway and Transportation Research and Development, 2018, 35 (5): 73- 81
[21]   JONG F B P. Overview fatigue phenomenon in orthotropic bridge decks in the Netherlands [C]// Proceedings of Orthotropic Bridge Decks. Sacramento: [s. n.], 2004: 489-512.
[1] Hong-hui WANG,Xin FANG,De-jiang LI,Gui-jie LIU. Fatigue crack growth prediction method under variable amplitude load based on dynamic Bayesian network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 280-288.
[2] Wen-tao YU,Xu XIE,Cheng CHENG. Effects of welding details on ultra-low cycle fatigue performance of T-welded joint[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 31-37.
[3] Guo-hui SHEN,Yu-nan BAO,Yong GUO,Gang SONG,Yi-wen WANG. Along-line wind loads and distribution patterns of transmission lines[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1658-1665.
[4] Kai-jun LOU,Feng YU,Tang-dai XIA,Jian MA. Stability analysis of diaphragm wall retained structure in clay[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1697-1705.
[5] Zheng ZHANG,Hao ZHANG,Hao CHAI,Hua-ping WU,Shao-fei JIANG. Design and performance analysis of variable stiffness multi-stable composite laminate structure[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1341-1346.
[6] Yong CHEN,Yong-quan LI,Chong-lei XIE,Kuang-liang QIAN,Ye-sheng ZHANG,Peng-yun CHENG,Xuan-zuo YE. Pushover test study of masonry structure restrained by steel-tube-bundle shear walls[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 499-511.
[7] Yi-bo WANG,Hui-ming DING,Jin-yang ZHENG,Qun-jie LU,Zhen-yu WANG,Ping XU,Zhi-wei CHEN. Cryogenic low-cycle fatigue performance of pre-strained metastable austenitic stainless steel (S30408)[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2190-2195.
[8] Xiao-wei LIAO,Yuan-qing WANG,Jian-guo WU,Yong-jiu SHI. Fatigue performance of non-load-carrying cruciform fillet-welded joints at low ambient temperature[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2018-2026.
[9] Jiang-xing LONG,Wei-liang JIN,Jun ZHANG,Jiang-hong MAO,Lei CUI. Experimental study on fatigue properties of steel bars after electrochemical repair[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 64-72.
[10] Shui-guang TONG,Jia-zhi MIAO,Zhe-ming TONG,Shun HE,Shu-feng XIANG,Xiang-hui SHUAI. Finite element analysis and optimization for static and dynamic characteristics of diesel forklift frame[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1637-1646.
[11] Xian-rong DAI,Lu WANG,Chang-jiang WANG,Xiao-yang WANG,Rui-li SHEN. Anti-slip scheme of full-vertical friction plate for multi-pylon suspension bridge[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1697-1703.
[12] Jian-bin ZHAO,Yi-bo XI,Zhen-yu WANG. Fatigue damage calculation method of monopile supported offshore wind turbine[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1711-1719.
[13] Zu-wei HUANG,Jun-qing LEI,Cheng-zhong GUI,Shu-lun GUO. Experimental study of fatigue on orthotropic steel deck of cable-stayed bridge[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1071-1082.
[14] Jue WANG,Wen-yu JI,Wang-wang LI. Full-range analysis on fatigue performance of prestressed reactive powder concrete-normal concrete composite beam[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 917-924.
[15] Jun WEI,Yong-xiao DU,Man-shu LIANG. Influence of fatigue stiffness degradation for beam structure on modal frequency[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 899-909.