Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (1): 64-72    DOI: 10.3785/j.issn.1008-973X.2020.01.008
Civil Engineering, Transportation Engineering     
Experimental study on fatigue properties of steel bars after electrochemical repair
Jiang-xing LONG1,2(),Wei-liang JIN1(),Jun ZHANG2,*(),Jiang-hong MAO2,Lei CUI2
1. Institute of Structural Engineering, Zhejiang University, Hangzhou 310058, China
2. School of Civil Engineering and Architecture, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
Download: HTML     PDF(4091KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The axial tensile fatigue test of steel bars after electrochemical chloride extraction and bidirectional electromigration rehabilitation was conducted in order to analyze the influence of electrochemical repair on the fatigue properties of steel bars. The mechanism of fatigue properties changes of steel bars caused by chemical repair techniques was explained based on the fracture mechanics principle and the fracture micromorphology. Results show that electrochemical chloride extraction causes the fatigue crack threshold of the steel bar to decrease and the fatigue elastic modulus to degrade. The macroscopic phenomenon is the reduction of fatigue life. The fatigue cracks of steel bars originated from the white point in the steel after electrochemical chloride removal, the fatigue striation spacing increases, and the dimples in the short-term fault zone become smaller and lighter. The bidirectional electromigration rehabilitation with the rust inhibitor has less negative impact on the fatigue performance of the steel bar. There are no obvious changes in the micromorphology of the steel bars after bidirectional electromigration.



Key wordselectrochemical chloride extraction      bidirectional electromigration rehabilitation      current density      hydrogen embrittlement      steel fatigue     
Received: 07 December 2018      Published: 05 January 2020
CLC:  U 441  
  TU 375  
Corresponding Authors: Jun ZHANG     E-mail: longjiangxing@zju.edu.cn;jinwl@zju.edu.cn;zj@nit.zju.edu.cn
Cite this article:

Jiang-xing LONG,Wei-liang JIN,Jun ZHANG,Jiang-hong MAO,Lei CUI. Experimental study on fatigue properties of steel bars after electrochemical repair. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 64-72.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.01.008     OR     http://www.zjujournals.com/eng/Y2020/V54/I1/64


电化学修复后钢筋疲劳性能试验研究

为了探明电化学修复对钢筋疲劳性能的影响,开展电化学除氯和双向电迁处理后钢筋的轴向拉伸疲劳试验. 基于断裂力学原理及断口微观形貌分析,揭示电化学修复技术引起钢筋疲劳性能变化的机理. 结果表明,电化学除氯会引起钢筋疲劳裂纹门槛值的减小及疲劳弹性模量的退化,宏观表现为钢筋疲劳寿命减小;电化学除氯后钢筋疲劳裂纹起源于钢中白点,裂纹扩展区疲劳辉纹间距增大,瞬断区韧窝变小变浅. 掺入阻锈剂的双向电迁方法对钢筋疲劳性能的负面影响较小,双向电迁修复后钢筋的疲劳断口微观形貌相对于普通钢筋未见明显变化.


关键词: 电化学除氯,  双向电迁,  电流密度,  氢脆,  钢筋疲劳 
Fig.1 Electrochemical repair schematic
Fig.2 Site map of electrochemical repair test
Fig.3 Cross rib grinding of steel bar clamping end
Fig.4 Fatigue loading site map
试件编号 I/(A·m?2 t/周 ${\sigma _{\max }}$ $\Delta{\sigma}$/MPa Nf/次 Dfrac1)/mm
注:1)断裂部位指钢筋断口距下夹头表面的距离,部分试件断于夹头处数据视为试验失败,未列出.
C-0.5 ? ? 0.5 ${\sigma _{\rm{u}}}$ 220.28 920 846 295
E-1-0.5 1 2 0.5 ${\sigma _{\rm{u}}}$ 220.28 908 345 42
E-3-0.5 3 2 0.5 ${\sigma _{\rm{u}}}$ 220.28 846 547 156
E-5-0.5 5 2 0.5 ${\sigma _{\rm{u}}}$ 220.28 786 583 35
C-0.6 ? ? 0.6 ${\sigma _{\rm{u}}}$ 275.31 410 096 266
E-1-0.6 1 2 0.6 ${\sigma _{\rm{u}}}$ 275.31 381 668 38
E-3-0.6 3 2 0.6 ${\sigma _{\rm{u}}}$ 275.31 352 908 295
E-5-0.6 5 2 0.6 ${\sigma _{\rm{u}}}$ 275.31 321 572 253
B-1-0.6 1 2 0.6 ${\sigma _{\rm{u}}}$ 275.31 389 097 274
B-3-0.6 3 2 0.6 ${\sigma _{\rm{u}}}$ 275.31 409 368 244
B-5-0.6 5 2 0.6 ${\sigma _{\rm{u}}}$ 275.31 393 830 291
C-0.65 ? ? 0.65 ${\sigma _{\rm{u}}}$ 302.85 326 505 228
E-1-0.65 1 2 0.65 ${\sigma _{\rm{u}}}$ 302.85 311 655 216
E-3-0.65 3 2 0.65 ${\sigma _{\rm{u}}}$ 302.85 302 422 84
E-5-0.65 5 2 0.65 ${\sigma _{\rm{u}}}$ 302.85 284 783 148
B-1-0.65 1 2 0.65 ${\sigma _{\rm{u}}}$ 302.85 318 634 53
B-3-0.65 3 2 0.65 ${\sigma _{\rm{u}}}$ 302.85 317 548 132
B-5-0.65 5 2 0.65 ${\sigma _{\rm{u}}}$ 302.85 321 493 258
C-0.7 ? ? 0.7 ${\sigma _{\rm{u}}}$ 330.39 233 588 280
E-1-0.7 1 2 0.7 ${\sigma _{\rm{u}}}$ 330.39 222 274 夹头
E-3-0.7 3 2 0.7 ${\sigma _{\rm{u}}}$ 330.39 191 616 夹头
E-5-0.7 5 2 0.7 ${\sigma _{\rm{u}}}$ 330.39 186 272 290
Tab.1 Fatigue test results of rebars
Fig.5 Residual strain curve under different current density
Fig.6 Stress-strain hysteresis curves at 1/2 life-time
Fig.7 Fatigue strain amplitude of steel bars at different current densities
Fig.8 Fatigue life under two different current densities
Fig.9 S-N curve of ECE group
Fig.10 Microscopic morphology of fatigue source area
Fig.11 Fatigue striation of crack propagation area
Fig.12 Morphological characteristics of dimples in short-break zone
[1]   金伟良, 赵羽习. 混凝土结构耐久性 [M]. 北京: 科学出版社, 2014.
[2]   MARTA N I, ANDRADE C, CASTELLOTE M, et al Advancements in non-destructive control of efficiency of electrochemical repair techniques[J]. British Corrosion Journal, 2009, 44 (2): 108- 118
[3]   李森林, 范卫国, 蔡伟成, 等 电化学脱盐处理现场试验研究[J]. 水运工程, 2004, (12): 1- 3
LI Sen-lin, FAN Wei-guo, CAI Wei-cheng, et al A study on electrochemical desalination field test[J]. Port and Waterway Engineering, 2004, (12): 1- 3
doi: 10.3969/j.issn.1002-4972.2004.12.001
[4]   唐军务, 李森林, 蔡伟成, 等 钢筋混凝土结构电渗阻锈技术研究[J]. 海洋工程, 2008, 26 (3): 83- 88
TANG Jun-wu, LI Sen-lin, CAI Wei-cheng, et al Investigation of inhibitor electromigration anticorrosion technology on reinforced concrete[J]. The Ocean Engineering, 2008, 26 (3): 83- 88
doi: 10.3969/j.issn.1005-9865.2008.03.014
[5]   金伟良, 黄楠, 许晨, 等 双向电渗对钢筋混凝土修复效果的试验研究: 保护层阻锈剂、氯离子和总碱度的变化规律[J]. 浙江大学学报: 工学版, 2014, 48 (09): 1586- 1594
JIN Wei-liang, HUANG Nan, XU Chen, et al Experimental research on effect of bidirectional electromigration rehabilitation on reinforced concrete: concentration changes of inhibitor, chloride ions and total alkalinity[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (09): 1586- 1594
[6]   单鸿猷, 徐金霞, 蒋林华 电化学除氯和硅酸根电迁移法的联合修复研究[J]. 材料导报, 2016, 30 (14): 1- 5
SHAN Hong-you, XU Jin-xia, JIANG Lin-hua Remediation method of combining electrochemical chloride removal with eletro-migration of silicate ion[J]. Materials Review, 2016, 30 (14): 1- 5
[7]   HARDIE D, CHARLES E A, LOPEZ A H Hydrogen embrittlement of high strength pipeline steels[J]. Corrosion Science, 2006, 48 (12): 4378- 4385
doi: 10.1016/j.corsci.2006.02.011
[8]   NAGUMO M. Fundamentals of hydrogen embrittlement [M]. Singapore: Springer, 2016.
[9]   WOODTLI J, KIESELBACH R Damage due to hydrogen embrittlement and stress corrosion cracking[J]. Engineering Failure Analysis, 2000, 7 (6): 427- 450
doi: 10.1016/S1350-6307(99)00033-3
[10]   ROBERTSON I M, SOFRONIS P, NAGAO A, et al Hydrogen embrittlement understood[J]. Metallurgical and Materials Transactions B, 2015, 46 (3): 1085- 1103
doi: 10.1007/s11663-015-0325-y
[11]   GAIDIS J M Chemistry of corrosion inhibitors[J]. Cement and Concrete Composites, 2004, 26 (3): 181- 189
doi: 10.1016/S0958-9465(03)00037-4
[12]   LILLARD R S, SCULLY J R Hydrogen absorption in iron exposed to simulated concrete pore solutions[J]. Corrosion, 1996, 52 (2): 125- 137
doi: 10.5006/1.3292103
[13]   金伟良, 伍茜西, 毛江鸿, 等 电化学修复过程氢致钢筋塑性降低的影响与控制试验研究[J]. 海洋工程, 2017, 35 (05): 88- 94
JIN Wei-liang, WU Xi-xi, MAO Jiang-hong, et al Experiential study on the effect of hydrogen-induced plasticity decrease and control in the process of electrochemical repair of reinforced concrete[J]. The Ocean Engineering, 2017, 35 (05): 88- 94
[14]   BERTOLINI L, BOLZONI F, PEDEFERRI P, et al Cathodic protection and cathodic preventionin concrete: principles and applications[J]. Journal of Applied Electrochemistry, 1998, 28 (12): 1321- 1331
doi: 10.1023/A:1003404428827
[15]   SIEGWART M, LYNESS J F, MCFARLAND B J, et al The effect of electrochemical chloride extraction on pre-stressed concrete[J]. Construction and Building Materials, 2005, 19 (8): 585- 594
doi: 10.1016/j.conbuildmat.2005.01.012
[16]   SIEGWART M Influence of electrochemical chloride extraction on the performance of prestressed concrete under dynamic loading conditions[J]. Journal of Materials in Civil Engineering, 2006, 18 (18): 800- 812
[17]   李永德, 李守新, 杨振国, 等 氢对高强弹簧钢50CrV4超高周疲劳性能的影响[J]. 金属学报, 2008, 44 (1): 64- 68
LI Yong-de, LI Shou-xin, YANG Zhen-guo, et al Influence of hydrogen on ultrahigh cycle fatigue properties of high strength spring steel 50CrV4[J]. Acta Metallurgica Sinica, 2008, 44 (1): 64- 68
doi: 10.3321/j.issn:0412-1961.2008.01.013
[18]   FURUYA Y, HIRUKAWA H, HAYAKAWA M Gigacycle fatigue properties of hydrogen-charged JIS-SCM440 low-alloy steel under ultrasonic fatigue testing[J]. Metallurgicals and materials Transactions A, 2010, 41 (9): 2248- 2256
doi: 10.1007/s11661-010-0307-2
[19]   中华人民共和国建设部. 金属轴向疲劳试验方法: GB3075-82 [S]. 北京: 中国建筑工业出版社, 1982.
[20]   崔约贤, 王长利. 金属断口分析[M]. 哈尔滨: 哈尔滨工业大学出版社, 1998.
[21]   LING C A new method for predicting fatigue crack propagation threshold[J]. Journal of Mechanical Strength, 1989, 2005: 124- 125
[22]   LUKITO H, SZKLARSKA-SMIALOWSKA Z Susceptibility of medium-strength steels to hydrogen-induced cracking[J]. Corrosion Science, 1997, 39 (12): 2151- 2169
doi: 10.1016/S0010-938X(97)00099-1
[23]   LOUTHAN M R Hydrogen embrittlement of metals: a primer for the failure analyst[J]. Journal of Failure Analysis and Prevention, 2008, 8 (3): 289- 307
doi: 10.1007/s11668-008-9133-x
[24]   PETCH&AMP N J, STABLES P Delayed fracture of metals under static load[J]. Nature, 1952, 169 (4307): 842- 843
doi: 10.1038/169842a0
[25]   SIEGWART M, MCFARLAND B J, ABU-TAIR A, et al Application of inhibitors to reduce the hydrogen uptake of steel during electrochemical chloride extraction[J]. Corrosion, 2002, 58 (3): 257- 266
doi: 10.5006/1.3279877
[26]   张少华, 王起才, 张戎令, 等 16 mm HRB(F)500级高强钢筋疲劳性能研究[J]. 工业建筑, 2017, 47 (06): 40- 43
ZHANG Shao-hua, WANG Qi-cai, ZHANG Rong-ling, et al Research on fatigue performance of 16 millimetre HRB(F)500 high-strength reinforced bar[J]. Industrial Construction, 2017, 47 (06): 40- 43
[27]   GARBATOV Y, SOARES C G, PARUNOV J Fatigue strength experiments of corroded small scale steel specimens[J]. International Journal of Fatigue, 2014, 59 (3): 137- 144
[28]   欧洲钢结构协会第六技术委员会. 钢结构的疲劳设计规范 [S]. 铁道部科学研究院, 译. 西安: 西北工业大学出版社, 1989.
[29]   SUN Y, HANAKI S, YAMASHITA M, et al Fatigue behavior and fractography of laser-processed hot work tool steel[J]. Vacuum, 2004, 73 (3/4): 655- 660
[1] BAI Qing-cheng, LIU Jian-zhong, SONG Zi-yang, CHENG Jun. Effect of waste water on hydrogen production from coal slurry electrolysis[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 180-185.
[2] PAN Long, TAO Ding feng, HE Wen, GU Bang ping. Skin effect of decay oscillating current pulse in rectangular cross section conductor[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(4): 625-630.
[3] XU Chen, JIN Wei-liang, HUANG Nan, WU Hang-tong, MAO Jiang-hong, XIA Jin.
Experiment on repair effect of bidirectional electromigration rehabilitation on reinforced concrete:changing rule of protective layer strength
[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(6): 1128-1138.
[4] WANG Jiu gen,FENG Lan lan,LI Yang. Influences of surface topography on electrical pitting[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2025-2032.
[5] JIN Wei-liang, HUANG Nan, XU Chen, MAO Jiang-hong. Experimental research on effect of bidirectional electromigration rehabilitation on reinforced concrete—Concentration changes of inhibitor, chloride ions and total alkalinity[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(9): 1586-1594.