Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (1): 73-82    DOI: 10.3785/j.issn.1008-973X.2020.01.009
Civil Engineering, Transportation Engineering     
Shear behavior of exposed steel column base joint
Lei DING(),Gen-shu TONG,Lei ZHANG*()
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(1684KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Totally 19 specimens in 7 groups with large diameters were tested to analyze the shear behavior referring to the exposed steel column bases joint used in the practical engineering. The diameter of the hole of base plate, the thickness of base plate, the diameter of anchor bolts and the yield strength of bolt material were changed among the specimens. The test results show that the anchor bolt connection has considerable shear resistance. There are three ultimate failure modes: shear failure of anchor bolt when reinforcement of concrete is sufficient, punching failure of concrete when reinforcement of concrete is insufficient, or shear failure of anchor bolt and punching failure of concrete occur simultaneously. There are two types of load-relative displacement curves for anchor bolt connections, and the main difference is whether there is a slip section. The experimental values were compared with three existing theoretical models for the design shear bearing capacity of anchor bolt connection, and the recommended simplified formula was given. A model considering the effects of tensile force, shear force and bending moment of anchor bolt section was proposed for the ultimate shear bearing capacity of anchor bolt connection.



Key wordsanchor bolt connection      shear behavior      steel column base      design method      slip     
Received: 27 November 2018      Published: 05 January 2020
CLC:  TU 391  
Corresponding Authors: Lei ZHANG     E-mail: phdinglei@163.com;celzhang@zju.edu.cn
Cite this article:

Lei DING,Gen-shu TONG,Lei ZHANG. Shear behavior of exposed steel column base joint. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 73-82.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.01.009     OR     http://www.zjujournals.com/eng/Y2020/V54/I1/73


外露式钢柱脚节点的抗剪性能

参考实际工程中使用的外露式钢柱脚节点,以柱脚底板孔径、柱脚底板厚度、锚栓直径和锚栓强度为主要参数,设计7组共19个大直径锚栓的钢柱脚试件,开展抗剪性能试验研究. 试验表明,锚栓连接具有可观的抗剪能力,节点的最终破坏模式有3种:当基础混凝土配筋足够时为锚栓剪断,配筋不够时为混凝土冲切破坏,介于两者之间的锚栓剪断同时存在混凝土冲切裂缝;锚栓连接的荷载-相对位移曲线呈现2种类型,主要区别在于是否存在滑移段. 对于锚栓连接的抗剪承载力设计值,将 3个已有理论模型与试验结果对比,给出推荐的简化公式. 对于锚栓连接的极限抗剪承载力,提出考虑锚栓截面拉力、剪力和弯矩影响的计算模型.


关键词: 锚栓连接,  抗剪性能,  钢柱脚,  设计方法,  滑移 
Fig.1 Anchor bolt connection used in practical engineering
Fig.2 Structure of specimen of anchor bolt connection
编号 名称 d/mm d0/mm t/mm
T6 M24D48T32 24 48 32
T7 M30D42T32 30 42 32
T8 M30D48T32 30 48 32
T9 M36D48T32 36 48 32
T10 M36D48T40 36 48 40
T11 M39D51T32 39 51 32
T12 M39D65T40 39 65 40
Tab.1 Main parameters of specimens of anchor bolt connection
试件 fy/MPa fu/MPa E/GPa
M24 290 440 199
M30 284 447 198
M36 288 456 207
M39 358 552 207
Tab.2 Material test results of anchor bolts
Fig.3 Loading device
试件名称 试件编号 ${\delta _A}$ /mm ${V_A}$/kN $\overline {{V_A}} $/kN ${\delta _C}$/mm ${V_C}$/kN $\overline {{V_C}} $/kN 破坏模式
M24D48T32 T6A 3.52 112 115 24.29 457 494 R1锚栓剪断
M24D48T32 T6B 2.48 138 115 22.40 467 494 L2锚栓剪断
M24D48T32 T6C 3.58 95 115 36.13 557 494 R1锚栓剪断
M30D42T32 T7A ? ? ? 13.74 694 694 L2锚栓剪断
M30D48T32 T8A 4.11 187 209 20.86 756 700 R2锚栓剪断
M30D48T32 T8B 5.08 209 209 18.03 604 700 R2锚栓剪断
M30D48T32 T8C 4.30 230 209 18.95 739 700 L1锚栓剪断
M36D48T32 T9A ? ? ? 23.55 1 015 1 209 L1和L2锚栓剪断,混凝土有冲切裂缝
M36D48T32 T9B ? ? ? 40.18 1 305 1 209 混凝土冲切破坏
M36D48T32 T9C ? ? ? 37.27 1 306 1 209 R1锚栓剪断,混凝土有冲切裂缝
M36D48T40 T10A ? ? ? 19.00 997 1 007 L1锚栓剪断
M36D48T40 T10B ? ? ? 22.13 969 1 007 L1锚栓剪断
M36D48T40 T10C ? ? ? 22.46 1 056 1 007 L2锚栓剪断,混凝土有冲切裂缝
M39D51T32 T11A ? ? ? 29.56 1 570 1 589 混凝土冲切破坏
M39D51T32 T11B 2.73 560 ? 20.94 1 696 1 589 R2锚栓剪断,混凝土有冲切裂缝
M39D51T32 T11C ? ? ? 17.84 1 501 1 589 R2锚栓剪断,混凝土有冲切裂缝
M39D65T40 T12A 3.65 536 520 47.44 1 596 1 668 混凝土冲切破坏
M39D65T40 T12B 5.28 413 520 41.81 1 700 1 668 混凝土冲切破坏
M39D65T40 T12C 6.29 611 520 45.83 1 709 1 668 混凝土冲切破坏
Tab.3 Test results of each group of specimens
Fig.4 Failure mode of anchor bolt connection(L,R refers to left and right sides;1,2 refers to upper and lower sides)
Fig.5 Load- relative displacement curves of each group of specimens
Fig.6 Type of load-relative displacement curve
Fig.7 Effect of base plate hole diameter on load- relative displacement curves(T7、T8)
试件编号 试件名称 d/mm d0/mm t/mm (d0?d)/mm $\chi $
T1 M24D36T30 24 36 30 12 0.46
T2 M24D36T20 24 36 20 12 0.68
T3 M24D42T20 24 42 20 18 0.84
T4 M20D32T20 20 32 20 12 0.72
T5 M30D42T20 30 42 20 12 0.85
T6 M24D48T32 24 48 32 24 0.68
T7 M30D42T32 30 42 32 12 0.54
T8 M30D48T32 30 48 32 18 0.66
T9 M36D48T32 36 48 32 12 0.59
T10 M36D48T40 36 48 40 12 0.47
T11 M39D51T32 39 51 32 12 0.55
T12 M39D65T40 39 65 40 26 0.64
Tab.4 Calculation parameters reflecting slip section length of load-relative displacement curve
Fig.8 Model for two plastic hinges of anchor bolt
试件 ${V_{A1}}$/kN ${V_{A2}}$/kN ${V_{A3}}$/kN ${V_{{\rm{test}},A}}$/kN $\displaystyle\frac{V_{A1}}{V_{{\rm{test,}}A}}$ $\displaystyle\frac{V_{A2}}{V_{{\rm{test,}}A}}$ $\displaystyle\frac{V_{A3}}{V_{{\rm{test,}}A}}$
T1 114 175 162 172 0.66 1.02 0.94
T2 150 200 207 237 0.63 0.84 0.88
T3 150 196 198 227 0.66 0.86 0.87
T4 71 98 100 87 0.82 1.13 1.15
T5 233 277 313 293 0.79 0.95 1.07
T6 90 132 118 115 0.78 1.15 1.02
T7 171 232 231 ? ? ? ?
T8 171 229 223 209 0.82 1.09 1.07
T9 288 365 382 ? ? ? ?
T10 248 340 331 ? ? ? ?
T11 442 557 566 ? ? ? ?
T12 383 505 467 520 0.74 0.97 0.90
Tab.5 Comparison between design values and experimental values of shear capacity
试件编号 ${V_{{\rm{test}}}}$/kN ${A_{\rm{e}}}{f_{\rm{u}}}$/kN ${\eta _{{\rm{test}}}}$
T6 494 621 0.79
T7 694 1 003 0.69
T8 700 1 003 0.70
T9 1 209 1 490 0.81
T10 1 007 1 490 0.68
T11 1 589 2 154 0.74
T12 1 668 2 154 0.77
Tab.6 Calculation of experimental values of ultimate bearing capacity coefficient
Fig.9 Shear calculation model of bolt connection under ultimate state
$\alpha $/(°) $\eta $ $\alpha $/(°) $\eta $ $\alpha $/(°) $\eta $
5 0.63 20 0.71 35 0.78
10 0.66 25 0.73 40 0.80
15 0.68 30 0.76 45 0.82
Tab.7 Change of ultimate bearing capacity coefficient with inclination angle of anchor bolt
Fig.10 Stress of anchor bolts change with inclination angle of anchor bolt
试件 ${\delta _C}$/mm $a + l$/mm $\alpha $/(°) $\eta $ ${\eta _{{\rm{test}}}}$
T1 21.50 44.74 26 0.74 0.73
T2 23.67 37.54 32 0.77 0.77
T3 24.07 38.70 32 0.77 0.77
T4 18.12 31.87 30 0.76 0.72
T5 20.53 40.54 27 0.74 0.59
T6 27.61 47.41 30 0.76 0.79
T7 13.74 48.41 16 0.69 0.69
T8 19.28 49.75 21 0.71 0.70
T9 33.67 53.07 32 0.77 0.81
T10 21.20 58.96 20 0.71 0.68
T11 22.78 59.04 21 0.71 0.74
T12 45.02 67.30 34 0.78 0.77
Tab.8 Comparisons between calculated and experimental values of ultimate bearing capacity coefficient
[1]   李星荣, 魏才昂, 秦斌.钢结构连接节点设计手册[M]. 3版. 北京: 中国建筑工业出版社, 2014.
[2]   钢结构设计标准: GB50017—2017 [S]. 北京: 中国建筑工业出版社, 2017.
[3]   Guideline for European technical approval of metal anchors for use in concrete: ETAG-001 [S]. Brussels: European Organization for Technical Approvals, 1997.
[4]   Uniform building code: UBC-97 [S]. Whittier: International Conference of Building Officials, 1997.
[5]   于安麟, 永毓栋, 郭在田, 等 露出型钢柱脚抗剪性能的研究(I)[J]. 工业建筑, 1992, 22 (3): 24- 26
YU An-lin, YONG Yu-dong, GUO Zai-tian, et al Research on behavior of shearing resistance in steel column base(I)[J]. Industrial Construction, 1992, 22 (3): 24- 26
doi: 10.3321/j.issn:1000-8993.1992.03.006
[6]   于安麟, 永毓栋, 郭在田, 等 露出型钢柱脚抗剪性能的研究(Ⅱ)[J]. 工业建筑, 1992, 22 (5): 29- 33
YU An-lin, YONG Yu-dong, GUO Zai-tian, et al Research on behavior of shearing resistance in steel column base(Ⅱ)[J]. Industrial Construction, 1992, 22 (5): 29- 33
[7]   肖南, 何亮 钢结构柱脚抗剪键设计方法研究[J]. 浙江大学学报: 工学版, 2007, 41 (1): 181- 186
XIAO Nan, HE Liang Design method of shear connector in steel column base[J]. Journal of Zhejiang University: Engineering Science, 2007, 41 (1): 181- 186
[8]   肖南, 顾强强 钢柱脚抗剪键埋深的对偶函数积分变换解法[J]. 浙江大学学报: 工学版, 2009, 43 (2): 353- 359
XIAO Nan, GU Qiang-qiang Solution of shear connector’s embedded length in steel column base by dual function integral transformation method[J]. Journal of Zhejiang University: Engineering Science, 2009, 43 (2): 353- 359
[9]   崔瑶, 李浩, 刘浩, 等 外露式钢柱脚受剪性能试验研究[J]. 建筑结构学报, 2017, 38 (7): 51- 58
CUI Yao, LI Hao, LIU Hao, et al Experimental study on shear behavior of exposed column base[J]. Journal of Building Structures, 2017, 38 (7): 51- 58
[10]   崔瑶, 李浩, 刘浩, 等 外露式钢柱脚恢复力特性分析[J]. 工程力学, 2018, 35 (7): 232- 242
CUI Yao, LI Hao, LIU Hao, et al Hysteretic resistance mechanism of exposed steel column bases[J]. Engineering Mechanics, 2018, 35 (7): 232- 242
[11]   崔瑶, 刘浩, 李浩, 等 外露式钢柱脚抗震性能试验研究[J]. 建筑结构学报, 2018, 39 (7): 115- 122
CUI Yao, LIU Hao, LI Hao, et al Experimental study on seismic behavior of exposed steel column base[J]. Journal of Building Structures, 2018, 39 (7): 115- 122
[12]   UEDA T, KITIPORNCHAI S, LING K Experimental investigation of anchor bolts under shear[J]. Journal of Structural Engineering, ASCE, 1990, 116 (4): 910- 924
doi: 10.1061/(ASCE)0733-9445(1990)116:4(910)
[13]   ALQEDRA M A, ASHOUR A F Prediction of shear capacity of single anchors located near a concrete edge using neural networks[J]. Computers and Structures, 2005, 83 (28-30): 2495- 2502
doi: 10.1016/j.compstruc.2005.03.019
[14]   LEE N H, PARK K R, SUH Y P Shear behavior of headed anchors with large diameters and deep embedments in concrete[J]. Nuclear Engineering and Design, 2011, 241 (3): 608- 616
doi: 10.1016/j.nucengdes.2010.04.018
[15]   EPACKACHI S, ESMAILI O, MIRGHADERI S R, et al Behavior of adhesive bonded anchors under tension and shear loads[J]. Journal of Constructional Steel Research, 2015, 114: 269- 280
doi: 10.1016/j.jcsr.2015.07.022
[16]   RODAS P T, ZAREIAN F, KANVINDE A Hysteretic model for exposed column base-connections[J]. Journal of Structural Engineering, ASCE, 2016, 142 (12): 04016137
doi: 10.1061/(ASCE)ST.1943-541X.0001602
[17]   KANVINDE A M, GRILLI D A, ZAREIAN F Rotational stiffness of exposed column base connections: experiments and analytical models[J]. Journal of Structure Engineering, ASCE, 2012, 138 (5): 549- 560
doi: 10.1061/(ASCE)ST.1943-541X.0000495
[18]   SHAHEEN M A, TSAVDARIDIS K D, SALEM E Effect of grout properties on shear strength of column base connections: FEA and analytical approach[J]. Engineering Structures, 2017, 152: 307- 319
doi: 10.1016/j.engstruct.2017.08.065
[19]   艾文超. 钢柱脚锚栓抗剪性能研究[D]. 杭州: 浙江大学, 2011.
AI Wen-chao. Study of shear behavior of anchor bolt connections at steel column bases [D]. Hangzhou: Zhejiang University, 2011.
[20]   艾文超, 童根树, 张磊, 等 钢柱脚锚栓连接受剪性能试验研究[J]. 建筑结构学报, 2012, 33 (3): 80- 88
AI Wen-chao, TONG Gen-shu, ZHANG Lei, et al Experimental study of shear behavior of anchor bolt connections at steel column bases[J]. Journal of Building Structures, 2012, 33 (3): 80- 88
[1] Li WANG,Shi-zhong LIU,Wei LU,Si-sheng NIU,Xin-lei SHI. Temperature effect of new-type composite box girder with corrugated steel webs[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 675-683.
[2] Jing LI,Chen WANG,Jia-xu ZHANG. Wheel slip tracking control of vehicle based on adaptive fast terminal sliding mode control method[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 169-176.
[3] Xian-rong DAI,Lu WANG,Chang-jiang WANG,Xiao-yang WANG,Rui-li SHEN. Anti-slip scheme of full-vertical friction plate for multi-pylon suspension bridge[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1697-1703.
[4] Bin LUO,Wei HUANG,Xiang MA,Bin LI,Wen-cai ZHOU,Shan-shan REN. Flexural behavior of sandwich composite panels with core material of expanded polystyrene thermal insulation motar[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2185-2196.
[5] CHEN Ying-qi, WANG Quan-cai. Optimization calculation of design thrust for landslide[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(7): 1320-1328.
[6] PENG Zhao, LAN Ji-wu, ZHAN Liang-tong, HE Hai-jie, FU Yan-ming, ZHENG Xue-juan. Application of loading berm in landfill partial slip control[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(4): 710-718.
[7] WANG Yong-bao, ZHAO Ren-da, WU De-bao. Time-dependent behavior of concrete-filled steel tube considering initial stress and bond-slip effect[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2306-2313.
[8] XIANG Yi-qiang, HE Chao-chao, QIU Zheng. Calculation of long-term slippage for externally prestressing steel-concrete composite beam[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 739-744.
[9] YANG Qin, ZHANG Hai-jun, SHEN Jian-ying, LIU Yu-lu. Extended velocity slip boundary condition based on Boltzmann moment equations[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(12): 2408-2413.
[10] WANG Zhen,WANG Jing quan,QI Jia nan. Computing model for deformation capacity of concrete filled steel tube reinforced concrete bridge columns[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 864-870.
[11] MA Hao jun, ZHU Shao peng, YU Xiao li, XU Yin chuan, LIN Ding. Electronic differential control considering rolling movement for electric vehicles[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(3): 566-573.
[12] XU Bing, CHAO Qun, ZHANG Jun-hui, LI Ying. Slipper optimization model based on equilibrium coefficient[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(6): 1009-1014.
[13] LI Da-peng,TANG De-gao,YAN Feng-guo,HUANG Mu. Mechanics of deep excavation’s spatial effect and soil pressure calculation method considering its influence[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(9): 1632-1639.
[14] HE Yu-liang, XIANG Yi-qiang, LI Shao-jun, LIU Li-si. Analysis on shear-lag effect of composite girders based on different parabolic warping displacement function[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(11): 1933-1940.
[15] JIANG Ao-yu, CHEN Ju, JIN Wei-liang. Flexural behaviour analysis of HRB500 reinforced concrete beams[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(9): 1566-1572.