Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (4): 675-683    DOI: 10.3785/j.issn.1008-973X.2021.04.009
    
Temperature effect of new-type composite box girder with corrugated steel webs
Li WANG1(),Shi-zhong LIU1,*(),Wei LU1,2,Si-sheng NIU3,Xin-lei SHI1
1. School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
2. School of Civil Engineering, Northwest Minzu University, Lanzhou 730030, China
3. Gansu Provincial Department of Transportation, Lanzhou 730030, China
Download: HTML     PDF(2094KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The temperature effect of new-type composite box girder with corrugated steel webs (CSWs) is prominent due to the significant difference of thermal parameters between concrete and steel. A theoretical calculation method for relative slip, internal force and stress of new composite box girder with CSWs under vertical temperature gradient was established. The equilibrium condition of sub-girder, deformation coordination condition between sub-girders and shear deformation effect of CSWs were considered. The temperature of new composite box test beam with CSWs in large temperature difference area was observed for a long time, and the vertical temperature gradient function of the structure was fitted. The temperature response of the structure under the measured temperature gradient was calculated by the theoretical method, and the theory was verified by finite element simulation. Results show that the interfacial shear force, the bending moment and the stress of the beam are all distributed as hyperbolic cosine function along the longitudinal direction of the beam under the measured temperature gradient. The relative slip between layers is distributed as hyperbolic sine function along the longitudinal direction of the beam. Whether the shear deformation effect of webs is considered greatly influences on the temperature effect in the range of 0.8 m from the end to the middle of the composite beam, and the effect on the middle of the composite beam can be ignored. The linear expansion coefficient of concrete, the sliding stiffness between layers and the interface temperature difference of composite box girder greatly influence on the temperature effect of the new composite box girder with CSWs. The interlayer shear connectors should be reasonably arranged in the design, and the temperature effect of the new composite box girder with CSWs should be calculated by considering the variation of the linear expansion coefficient of concrete.



Key wordscorrugated steel web      composite box girder      temperature field      temperature effect      shear deformation      slip effect     
Received: 28 July 2020      Published: 07 May 2021
CLC:  U 441  
Fund:  国家自然科学基金资助项目(51568036,51868040)
Corresponding Authors: Shi-zhong LIU     E-mail: wanglilzjtu@126.com;Liusz2000@163.com
Cite this article:

Li WANG,Shi-zhong LIU,Wei LU,Si-sheng NIU,Xin-lei SHI. Temperature effect of new-type composite box girder with corrugated steel webs. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 675-683.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.04.009     OR     http://www.zjujournals.com/eng/Y2021/V55/I4/675


新型波形钢腹板组合箱梁温度效应

针对由混凝土与钢材的热工参数差异显著而导致新型波形钢腹板组合箱梁温度效应突出的问题,考虑子梁微段平衡条件、子梁间变形协调条件和波形腹板剪切变形效应,建立竖向温度梯度作用下新型波形钢腹板组合箱梁相对滑移、内力和应力的理论计算方法. 对大温差地区的新型波形钢腹板组合箱型试验梁进行温度长期观测,拟合结构竖向温度梯度函数,通过该理论方法计算实测温度梯度下的结构温度响应,利用有限元模拟对本文理论进行验证. 结果表明,在实测温度梯度下,界面剪力、子梁弯矩和应力均沿梁纵向呈双曲余弦函数分布,层间相对滑移沿梁纵向呈双曲正弦函数分布. 是否考虑腹板剪切变形效应对组合梁梁端向跨中0.8 m范围的温度效应影响较大,对组合梁中部的影响可以忽略. 混凝土线膨胀系数、组合箱梁层间滑移刚度和界面温差对新型波形钢腹板组合箱梁温度效应的影响较大,在设计中应合理排布层间剪力连接件,考虑混凝土线膨胀系数的变异性对该类结构进行温度效应计算.


关键词: 波形钢腹板,  组合箱梁,  温度场,  温度效应,  剪切变形,  滑移效应 
Fig.1 Geometric shape of corrugated steel web
Fig.2 Axial deformation of new corrugated steel web composite box girder
Fig.3 Geometric parameters of new-type corrugated steel web composite box girder
材料 混凝土 Q235钢材
弹性模量E/MPa 3.45×104 2.1×105
质量密度ρ/(kg·m?3 2550 7850
线膨胀系数 $\gamma $/10?5 1.0 1.2
导热系数/(W·m?1·°C?1 2.3 58.2
泊松比 0.2 0.33
Tab.1 Material properties at 20 °C
Fig.4 FEM of test girder
Fig.5 Temperature time-history of test site
Fig.6 Temperature measuring points of test girder
Fig.7 Temperature time-history curve of test points
Fig.8 Vertical temperature gradient
Fig.9 Temperature effect of composite box girder
位置/m 是否考虑剪切变形 Qx)/kN Sx)/(10?3 mm) Mc /(105 N·mm) Ms /(N·mm) σc,t /MPa σc,b /MPa σs,t /MPa σs,b /MPa
跨中 ?2.701 0 5.55 ?5785.98 ?0.66 0.60 9.94 ?8.40
跨中 ?2.701 0 5.55 ?5785.98 ?0.66 0.60 9.94 ?8.40
x=3.2 ?2.700 0.002 5.54 ?5784.14 ?0.66 0.60 9.94 ?8.40
x=3.2 ?2.701 0 5.55 ?5785.89 ?0.66 0.60 9.94 ?8.40
x=3.75 ?2.549 0.245 5.23 ?5547.94 ?0.63 0.56 9.52 ?8.06
x=3.75 ?2.668 0.082 5.48 ?5630.46 ?0.66 0.59 9.69 ?8.16
x=3.875 ?2.024 1.089 4.15 ?4727.64 ?0.50 0.45 8.07 ?6.91
x=3.875 ?2.375 0.803 4.89 ?4260.98 ?0.58 0.53 7.43 ?6.07
x=3.95 ?1.150 2.495 2.35 ?3358.67 ?0.28 0.25 5.65 ?4.99
x=3.95 ?1.542 2.854 3.20 ?364.87 ?0.38 0.34 1.02 ?0.14
x=4.0 0 4.240 0 0 0 0 0 0
x=4.0 0 6.647 0 0 0 0 0 0
Tab.2 Main calculation results of temperature effect of composite box girder
Fig.10 Effect of linear expansion coefficient of concrete on slip and interfacial shear of composite box girder
Fig.11 Effect of sliding stiffness between layers on slip and interfacial shear of composite box girder
Fig.12 Effect of interface temperature difference on slip and interfacial shear of composite box girder
[1]   NIE Jian-guo, ZHU Ying-jie, TAO Mu-xuan, et al Optimized prestressed continuous composite girder bridges with corrugated steel webs[J]. Journal of Bridge Engineering, 2017, 22 (2): 1- 17
[2]   李宏江 波形钢腹板PC组合箱梁几个特殊问题研究进展[J]. 应用基础与工程科学学报, 2018, 26 (2): 440- 454
LI Hong-jiang Review on special issues in prestressed concrete box girders with corrugated steel webs[J]. Journal of Basic Science and Engineering, 2018, 26 (2): 440- 454
[3]   刘永健, 刘江, 张宁, 等 钢-混凝土组合梁温度效应的解析解[J]. 交通运输工程学报, 2017, 17 (4): 9- 19
LIU Yong-jian, LIU Jiang, ZHANG Ning, et al Analytical solution of temperature effects of steel-concrete composite girder[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (4): 9- 19
doi: 10.3969/j.issn.1671-1637.2017.04.002
[4]   AASHTO-LRFD bridge design specifications: AASHTO LRFDUS-2017 [S]. Washington: AASHTO, 2017.
[5]   Steel, concrete and composite bridges—Part2: specification for loads, BS 5400-2: 2006 [S]. [S. l.]: Standards Policy and Strategy Committee, 2006.
[6]   European Committee for Standardization. Eurocode1: actions on structures—Part 1-5: general actions—thermal actions [S]. Brussels: Standards Policy and Strategy Committee, 2003.
[7]   公路桥梁设计通用规范: JTG D60—2015 [S]. 北京: 人民交通出版社, 2015.
[8]   陈彦江, 王力波, 李勇 钢-混凝土组合梁桥温度场及温度效应研究[J]. 公路交通科技, 2014, 31 (11): 85- 91
CHEN Yan-jiang, WANG Li-bo, LI Yong Research of temperature field and its effect of steel-concrete composite girder bridge[J]. Journal of Highway and Transportation Research and Development, 2014, 31 (11): 85- 91
doi: 10.3969/j.issn.1002-0268.2014.11.014
[9]   季德钧, 刘江, 张瑑芳, 等 高原高寒地区钢-混凝土组合梁斜拉桥温度效应分析[J]. 建筑科学与工程学报, 2016, 33 (1): 113- 119
JI De-jun, LIU Jiang, ZHANG Zhuan-fang, et al Temperature effect analysis of steel-concrete composite girder cable-stayed bridge in arctic-alpine region[J]. Journal of Architecture and Civil Engineering, 2016, 33 (1): 113- 119
doi: 10.3969/j.issn.1673-2049.2016.01.016
[10]   肖新辉, 刘扬, 郭鑫, 等 组合高墩大跨连续刚构桥箱梁日照温度场观测与效应分析[J]. 铁道科学与工程学报, 2014, 11 (1): 10- 16
XIAO Xin-hui, LIU Yang, GUO Xin, et al Observation and study of temperature distribution in combination of high pier large span continuous and rigid frame bridge[J]. Journal of Railway Science and Engineering, 2014, 11 (1): 10- 16
doi: 10.3969/j.issn.1672-7029.2014.01.002
[11]   SALLAL A, FATEN M, NIJDEM T, et al Experimental and finite element investigation of temperature distributions in concrete-encased steel girders[J]. Structural Control and Health Monitoring, 2018, 25 (1): e2042.1- e2042.23
[12]   徐向锋, 张峰, 刘佳琪 波形钢腹板箱梁温度分布[J]. 重庆交通大学学报: 自然科学版, 2018, 37 (12): 1- 10
XU Xiang-feng, ZHANG Feng, LIU Jia-qi Temperature distribution of box girder with corrugated steel webs[J]. Journal of Chongqing Jiaotong University: Natural Science, 2018, 37 (12): 1- 10
doi: 10.3969/j.issn.1674-0696.2018.12.01
[13]   强俊涛, 姚晨, 张峰, 等 波形钢腹板组合桥梁温度效应研究[J]. 公路, 2016, 61 (3): 54- 57
QIANG Jun-tao, YAO Chen, ZHANG Feng, et al Study of temperature effect on the composed bridge with corrugated steel webs[J]. Highway, 2016, 61 (3): 54- 57
[14]   董旭, 邓振全, 李树忱, 等 大跨波形钢腹板箱梁桥日照温度场及温差效应研究[J]. 工程力学, 2017, 34 (9): 230- 238
DONG Xu, DENG Zhen-quan, LI Shu-chen, et al Research on sunlight temperature field and thermal difference effect of long span box girder bridge with corrugated steel webs[J]. Engineering Mechanics, 2017, 34 (9): 230- 238
[15]   赵品, 叶见曙 波形钢腹板箱梁桥面板横向温度效应分析[J]. 哈尔滨工程大学学报, 2019, 40 (5): 974- 978
ZHAO Pin, YE Jian-shu Analysis of transverse temperature effects on the deck of box girder with corrugated steel webs[J]. Journal of Harbin Engineering University, 2019, 40 (5): 974- 978
[16]   SHAN Cheng-lin, LIU Wen-fang Temperature stress analysis of prestressed concrete box girder with corrugated steel webs[J]. Transactions of Tianjin University, 2012, 18 (2): 97- 103
doi: 10.1007/s12209-012-1626-8
[17]   李丽园, 周茂定, 冀伟, 等 基于剪切附加挠度的波形钢腹板组合箱梁挠度计算[J]. 东南大学学报: 自然科学版, 2019, 49 (2): 296- 302
LI Li-yuan, ZHOU Mao-ding, JI Wei, et al Deflection calculation of composite box girder with corrugated steel webs based on shear additional deflection[J]. Journal of Southeast University: Natural Science Edition, 2019, 49 (2): 296- 302
doi: 10.3969/j.issn.1671-6264.2019.02.016
[18]   ELGAALY M, SESHADRI A, HAMILTON R Bending strength of steel beams with corrugated webs[J]. Journal of Structural Engineering, 1997, 123 (6): 772- 782
doi: 10.1061/(ASCE)0733-9445(1997)123:6(772)
[19]   SAMANTA A, MUKHOPADHYAY M Finite element static and dynamic analyses of folded plates[J]. Engineering Structure, 1999, 21 (3): 227- 287
[20]   NEVILLE A M. Properties of concrete [M]. London: LAP, 1995.
[21]   蒋翔, 童根树, 张磊 耐火钢-混凝土组合梁耐火极限和承载力[J]. 浙江大学学报: 工学版, 2017, 51 (8): 1482- 1493
JIANG Xiang, TONG Gen-shu, ZHANG Lei Fire resistance and bending bearing capacity of fire resistant steel-concrete composite beams[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (8): 1482- 1493
[1] Shao-heng HE,Tang-dai XIA,Bing-qi YU,Zhi DING,Min GAO,Hua-feng SHAN. Effect of temperature on volume strain and consolidation characteristics of calcareous sand[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 221-232.
[2] Lin-yuan HU,Wei-qiu CHEN,Zhi-cheng ZHANG,Rong-qiao XU. Free vibration analysis of concrete beams with corrugated steel webs based on Zig-zag theory[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 503-511.
[3] WANG Zhen,WANG Jing quan,QI Jia nan. Computing model for deformation capacity of concrete filled steel tube reinforced concrete bridge columns[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 864-870.
[4] CUI Jing, YIN Ling feng, GUO Xiao ming, TANG Gan. Inverse presumption method for temperature fields of spatial structure based on residual displacement[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(4): 720-726.
[5] NING Feng ping, YAO Jian tao, SUN Kun, MA Ming zhen,ZHAO Yong sheng.
Effect of multi-factor coupling on thermal properties of space bearing
[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(1): 129-136.
[6] WEI Yi-min, YANG Shi-xi, GAN Chun-biao.
Experiment for propagation characteristics of longitudinal wave in multi-step rod with variable cross-section
[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(6): 1146-1153.
[7] OU Zu-min, SUN Lu, CHENG Qun-qun. Simplified calculation of temperature field in high-speed railway ballastless track structure[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(3): 482-487.
[8] LIU Yi-xiang, TONG Gen-shu, ZHANG Lei. Fire resistance and load-bearing capacity of concrete filled fire-resistant steel tubular columns with circular cross-section[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(2): 208-217.
[9] MA Chi, YANG Jun, ZHAO Liang, MEI Xue song, SHI Hu, WANG Xin meng. Thermal characteristics analysis and experimental study on high speed spindle system[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2092-2102.
[10] TONG Gen shu, YANG Zhang, ZHANG Lei. Effective rigidity of one side stiffeners in Steel Shear Walls[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2151-2158.
[11] HE Yu-liang, XIANG Yi-qiang, LI Shao-jun, LIU Li-si. Analysis on shear-lag effect of composite girders based on different parabolic warping displacement function[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(11): 1933-1940.
[12] WANG Zi-yang, SHAO Wei-yun, ZHANG Yi-ping. Cylindrical surface model of ground source heat pump considering soil stratification[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(8): 1338-1345.
[13] WANG Zi-yang, ZHANG Yi-ping, ZHAN Guo-hui, YU Ya-nan. Study on heat transfer model of underground heat exchangers
with groundwater advection
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(8): 1450-1456.
[14] ZHONG Wei, DING Sheng, SONG Dong-gen, JU Xia, TONG Shui-guang. Numerical simulation of flow and temperature fields in the radiation
chamber of a waste-heat boiler for copper flash smelting
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(2): 321-326.
[15] FU Li-Wen, HONG Jin-Feng, CHENG Wei-Beng, XIANG Hua-Wei. Causes and treatments of quadrate concrete piers crack[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(9): 1738-1745.