Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (2): 221-232    DOI: 10.3785/j.issn.1008-973X.2020.02.002
Civil and Transportation Engineering     
Effect of temperature on volume strain and consolidation characteristics of calcareous sand
Shao-heng HE1(),Tang-dai XIA1,Bing-qi YU1,Zhi DING2,*(),Min GAO1,Hua-feng SHAN3
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Department of Civil Engineering, Zhejiang University City College, Hangzhou 310015, China
3. Institute of Coastal Environment and Geotechnical Engineering, Taizhou University, Taizhou 318000, China
Download: HTML     PDF(2430KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A series of temperature-controlled triaxial tests were conducted on calcareous sand from the South China Sea under different temperatures and confining pressures, in order to explore the mechanism of effect of temperature change on the volume strain of calcareous sand. Results show that the increase of temperature will cause compressive volume strain of calcareous sand and quartz sand with relative density of 70%. The thermal volume strain of calcareous sand caused by temperature rising is much larger than that of quartz sand, and the sensitivity of thermal volume strain of calcareous sand to confining pressure is much greater than that of quartz sand. When the confining pressure is high, the thermal volume strain of calcareous sand caused by temperature rising increases significantly and the development mode of volume strain changes obviously. The consolidation characteristics of calcareous sand and quartz sand under different temperatures were studied by using temperature-controlled consolidation apparatus. Results show that with the increase of temperature, the compression curves of two kinds of sand in e-lg p plane move upward and then downward, and the slope of straight section decreases first and then increases, but the consolidation stability time of two kinds of sand is ahead of time. Comparing with quartz sand, the consolidation compression of calcareous sand increases significantly in the temperature range of 45~75 °C, which is much higher than that of calcareous sand at normal temperature. Screening tests show that with the increase of temperature, the degree of particle breakage of calcareous sand after consolidation increases significantly, which leads to the increase of compression of calcareous sand during high temperature consolidation.



Key wordstemperature effect      calcareous sand from South China Sea      temperature-controlled triaxial apparatus      volume change      consolidation characteristics     
Received: 23 June 2019      Published: 10 March 2020
CLC:  TU 111  
Corresponding Authors: Zhi DING     E-mail: heshaoheng@zju.edu.cn;dingz@zucc.edu.cn
Cite this article:

Shao-heng HE,Tang-dai XIA,Bing-qi YU,Zhi DING,Min GAO,Hua-feng SHAN. Effect of temperature on volume strain and consolidation characteristics of calcareous sand. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 221-232.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.02.002     OR     http://www.zjujournals.com/eng/Y2020/V54/I2/221


温度效应对钙质砂体积应变和固结特性的影响

为了探究温度变化引起钙质砂体积应变的作用机制,在不同温度和围压下对南海钙质砂进行温控三轴试验,并与石英砂试验进行对比. 研究表明:升温引起相对密实度为70%的钙质砂和石英砂产生压缩体积应变;升温引起的钙质砂热体积应变远大于石英砂,且钙质砂热体积应变对围压的敏感性远强于石英砂;在围压较大时,升温引起的钙质砂热体积应变明显增加且体积应变发展模式显著改变. 利用温控固结仪研究不同温度下钙质砂和石英砂的固结特性. 研究表明:随温度升高,2种砂在e-lg p面内的压缩曲线先向上移再下移,直线段的斜率先减小后增大,但达到固结稳定的时间均提前;不同于石英砂,在45~75°C下,升温导致钙质砂的固结压缩量显著增加,远超常温水平,这是因为由筛分试验发现,随温度增加,钙质砂颗粒破碎程度增大,导致其在高温固结时的压缩量增大.


关键词: 温度效应,  南海钙质砂,  温控三轴仪,  体积变化,  固结特性 
Fig.1 X-ray diffraction results of natural calcareous sand
砂岩 Gs emax emin Cu Cc Dr /%
钙质砂 2.750 1.107 0.750 1.793 0.781 70
石英砂 2.659 0.508 0.342 5.030 1.350 70
Tab.1 Basic physical properties of calcareous and quartz sands
Fig.2 SEM images of typical calcareous sand particles
Fig.3 Gradation curve of calcareous and quartz sands
Fig.4 Temperature-controlled stress path triaxial apparatus
Fig.5 Average effective stress-deviatoric stress-temperature three-dimensional stress path
Fig.6 Temperature-controlled consolidation system
Fig.7 Relationship between thermal expansion coefficient of water with temperature and confining pressure
Fig.8 Curves of temperature and drainage volume with time in calcareous sand consolidation
Fig.9 Relationship between sample drainage volume with tempera ture and confining pressure
Fig.10 Mode of sand volume strain caused by temperature under different relative compactness
Fig.11 Volume strain of calcareous and quartz sands caused by temperature change under different confining pressures
Fig.12 Consolidation compression of calcareous and quartz sands at different temperatures against time
Fig.13 Gradation curve of calcareous sand after consolidation at different temperatures
Fig.14 Relative particle breakage index of calcareous sand after consolidation
Fig.15 e-lg p curve of calcareous and quartz sands at different temperatures
Fig.16 Normalized void ratio of calcareous and quartz sands at different temperatures against time
Fig.17 Variation of compressive modulus of calcareous sand with temperature under different vertical pressures
Fig.18 Relationship between lg Ei/pa and lg p/pa of calcareous and quartz sands
Fig.19 Relationship between test constants K and b of calcareous and quartz sands
Fig.20 Relationship between test parameters b and temperature of calcareous and quartz sands
Fig.21 Comparison of measured values of compressive modulus of calcareous and quartz sands with prediction curve of presented model
[1]   芮圣洁, 国振, 王立忠, 等 钙质砂与钢界面循环剪切刚度与阻尼比的试验研究[J]. 岩土力学, 2020, 41 (1): 1- 9
RUI Sheng-jie, GUO Zhen, WANG Li-zhong, et al Experimental study on cyclic shear stiffness and damping ratio of carbonate sand-steel interface[J]. Rock and Soil Mechanics, 2020, 41 (1): 1- 9
[2]   陈海洋, 汪稔, 李建国, 等 钙质砂颗粒的形状分析[J]. 岩土力学, 2005, 26 (9): 1389- 1392
CHEN Hai-yang, WANG Ren, LI Jian-guo, et al Grain shape analysis of calcareous soil[J]. Rock and Soil Mechanics, 2005, 26 (9): 1389- 1392
doi: 10.3969/j.issn.1000-7598.2005.09.008
[3]   汪轶群, 洪义, 国振, 等 南海钙质砂宏细观破碎力学特性[J]. 岩土力学, 2018, 39 (1): 199- 206
WANG Yi-qun, HONG Yi, GUO Zhen, et al Micro-and macro-mechanical behavior of crushable calcareous sand in South China Sea[J]. Rock and Soil Mechanics, 2018, 39 (1): 199- 206
[4]   LIU H, LIU H, XIAO Y, et al Effects of temperature on the shear strength of saturated sand[J]. Soils and Foundations, 2018, 58 (6): 1326- 1338
doi: 10.1016/j.sandf.2018.07.010
[5]   朱长歧, 陈海洋, 孟庆山, 等 钙质砂颗粒内孔隙的结构特征分析[J]. 岩土力学, 2014, (7): 1831- 1836
ZHU Chang-qi, CHEN Hai-yang, MENG Qing-shan, et al Microscopic characterization of intra-pore structures of calcareous sands[J]. Rock and Soil Mechanics, 2014, (7): 1831- 1836
[6]   蒋明镜, 吴迪, 曹培, 等 基于SEM图片的钙质砂连通孔隙分析[J]. 岩土工程学报, 2017, (Suppl.1): 1- 5
JIANG Ming-jing, WU Di, CAO Pei, et al Connected inner pore analysis of calcareous sands using SEM[J]. Chinese Journal of Geotechnical Engineering, 2017, (Suppl.1): 1- 5
[7]   周博, 库泉, 吕珂臻, 等 钙质砂颗粒内孔隙三维表征[J]. 天津大学学报: 自然科学与工程技术版, 2019, (Suppl.1): 41- 48
ZHOU Bo, KU Quan, LV Ke-zhen, et al Three-dimensional characterization of inner pores in calcareous sand particles[J]. Journal of Tianjin University: Science and Technology, 2019, (Suppl.1): 41- 48
[8]   WANG X, ZHU C Q, WANG X Z, et al Study of dilatancy behaviors of calcareous soils in a triaxial test[J]. Marine Georesources and Geotechnology, 2018, 37: 1- 14
[9]   WANG X, ZHU C Q, WANG X Z Experimental study on the coefficient of lateral pressure at rest for calcareous soils[J]. Marine Georesources and Geotechnology, 2019, 37: 1- 13
[10]   COOP M R, SORENSEN K K, FREITAS T M, et al Particle breakage during shearing of a carbonate sand[J]. Géotechnique, 2004, 54 (3): 157- 163
doi: 10.1680/geot.2004.54.3.157
[11]   张家铭, 张凌, 蒋国盛, 等 剪切作用下钙质砂颗粒破碎试验研[J]. 岩土力学, 2008, 29 (10): 2789- 2793
ZHANG Jia-ming, ZHANG Lin, JIANG Guo-sheng, et al Research on particle crushing of calcareous sands under triaxial shear[J]. Rock and Soil Mechanics, 2008, 29 (10): 2789- 2793
doi: 10.3969/j.issn.1000-7598.2008.10.037
[12]   吕亚茹, 李治中, 李浪 高应力状态下钙质砂的一维压缩特性及试验影响因素分析[J]. 岩石力学与工程学报, 2019, 38 (Suppl.1): 3142- 3150
LV Ya-ru, LI Zhi-zhong, LI Lang One-dimensional compression behavior of calcareous sand and its experimental technology under high stress conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38 (Suppl.1): 3142- 3150
[13]   王刚, 叶沁果, 查京京 珊瑚礁砂砾料力学行为与颗粒破碎的试验研究[J]. 岩土工程学报, 2018, 40 (5): 802- 810
WANG Gang, YE Qin-guo, ZHA Jing-jing Experimental study on mechanical behavior and particle crushing of coral sand-gravel fill[J]. Chinese Journal of Geotechnical Engineering, 2018, 40 (5): 802- 810
doi: 10.11779/CJGE201805004
[14]   梁珂, 陈国兴, 刘抗, 等 饱和珊瑚砂最大动剪切模量的循环加载衰退特性及预测模型[J]. 岩土力学, 2020, 41 (2): 1- 11
LIANG Ke, CHEN Guo-xing, LIU Kang, et al The degradation properties and the prediction model of maximum shear modulus of saturated coral sand under cyclic triaxial loading[J]. Soils and Foundations, 2020, 41 (2): 1- 11
[15]   刘汉龙, 肖鹏, 肖杨, 等 MICP胶结钙质砂动力特性试验研究[J]. 岩土工程学报, 2018, 40 (1): 38- 45
LIU Han-long, XIAO Peng, XIAO Yang, et al Dynamic behaviors of MICP-treated calcareous sand in cyclic tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40 (1): 38- 45
doi: 10.11779/CJGE201801002
[16]   PAASWELL R E Temperature effects on clay soil consolidation[J]. Journal of the Soil Mechanics and Foundations Division, 1967, 93 (3): 9- 21
[17]   CEKEREVAC C, LALOUI L Experimental study of thermal effects on the mechanical behaviour of a clay[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28 (3): 209- 228
doi: 10.1002/nag.332
[18]   ABUEL-NAGA H M, BERGADO D T, LIM B F Effect of temperature on shear strength and yielding behavior of soft Bangkok clay[J]. Soils and Foundations, 2007, 47 (3): 423- 436
doi: 10.3208/sandf.47.423
[19]   ABUEL-NAGA H M, BERGADO D T, RAMANA G V, et al Experimental evaluation of engineering behavior of soft Bangkok clay under elevated temperature[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132 (7): 902- 910
doi: 10.1061/(ASCE)1090-0241(2006)132:7(902)
[20]   LALOUI L Thermo-mechanical behaviour of soils[J]. French Revue of Civil Engineering, 2001, 5 (6): 809- 843
[21]   GRAHAM J, TANAKA N, CRILLY T, et al Modified cam-clay modelling of temperature effects in clays[J]. Canadian Geotechnical Journal, 2001, 38 (3): 608- 621
[22]   CAMPANELLA R G, MITCHELL J K Influence of temperature variations on soil behaviour[J]. Journal of the Soil Mechanics and Foundation Division, 1968, 94 (3): 709- 734
[23]   NG C W W, WANG S H, ZHOU C Volume change behaviour of saturated sand under thermal cycles[J]. Géotechnique Letters, 2016, 6 (2): 124- 131
doi: 10.1680/jgele.15.00148
[24]   高彦芳, 陈勉, 林伯韬, 等 温度对油砂力学性质的影响规律研究[J]. 岩石力学与工程学报, 2018, 37 (11): 2520- 2535
GAO Yan-fang, CHEN Mian, LIN Bo-tao, et al Thermal influences on mechanical properties of oil sands[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (11): 2520- 2535
[25]   何绍衡, 郑晴晴, 夏唐代, 等 考虑时间间歇效应的地铁列车荷载下海相软土长期动力特性试验研究[J]. 岩石力学与工程学报, 2019, 38 (2): 353- 364
HE Shao-heng, ZHENG Qing-qing, XIA Tang-dai, et al Experimental study on long-term dynamic characteristics of marine soft soils under metro train loads considering time intermittent effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38 (2): 353- 364
[26]   CAI Y, HAO B, GU C, et al Effect of anisotropic consolidation stress paths on the undrained shear behavior of reconstituted Wenzhou clay[J]. Engineering Geology, 2018, 242: 23- 33
doi: 10.1016/j.enggeo.2018.05.016
[27]   CEKEREVAC C, LALOUI L, VULLIET L A novel triaxialapparatus for thermo-mechanical testing of soils[J]. Geotechnical Testing Journal, 2005, 28 (2): 161- 170
[28]   BALDI G, HUECKEL T, PELLEGRINI R Thermal volume changes of the mineral-water system in low-porosity clay soils[J]. Canadian Geotechnical Journal, 1988, 25 (4): 807- 825
doi: 10.1139/t88-089
[29]   HABIBAGAHI K Temperature effect and the concept of effective void ratio[J]. Indian Geotechnical Journal, 1977, 71 (11): 14- 34
[30]   HARDIN B O Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111 (10): 1177- 1192
doi: 10.1061/(ASCE)0733-9410(1985)111:10(1177)
[31]   GREGORY A S, WHALLEY W R, WATTS C W, et al Calculation of the compression index and precompression stress from soil compression test data[J]. Soil Tillage Research, 2006, 89 (1): 45- 57
doi: 10.1016/j.still.2005.06.012
[32]   CAVALIERI K M V, ARVIDSSON J, DA SILVA A P, et al Determination of precompression stress from uniaxial compression tests[J]. Soil Tillage Research, 2008, 98 (1): 17- 26
doi: 10.1016/j.still.2007.09.020
[33]   王志亮, 郑明新, 李永池 求前期固结压力的数学模型研究及应用[J]. 岩土力学, 2005, 26 (10): 1587- 1590
WANG Zhi-liang, ZHENG Ming-xin, LI Yong-chi Research on mathematic model method for calculating pre-consolidation pressure and its application[J]. Rock and Soil Mechanic, 2005, 26 (10): 1587- 1590
doi: 10.3969/j.issn.1000-7598.2005.10.012
[1] Li WANG,Shi-zhong LIU,Wei LU,Si-sheng NIU,Xin-lei SHI. Temperature effect of new-type composite box girder with corrugated steel webs[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 675-683.
[2] FU Li-Wen, HONG Jin-Feng, CHENG Wei-Beng, XIANG Hua-Wei. Causes and treatments of quadrate concrete piers crack[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(9): 1738-1745.