Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Civil and Traffic Engineering     
Computing model for deformation capacity of concrete filled steel tube reinforced concrete bridge columns
WANG Zhen,WANG Jing quan,QI Jia nan
1. Key Laboratory of Concrete and Prestressed Concrete Structure of China Ministry of Education,Southeast University,
Nanjing 210096,China;2. National Prestress Engineering Research Center,Southeast University,Nanjing 210096,China
Download:   PDF(1200KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A calculation model was put forward to consider influence of shear and reinforcement slip to predict deformation capacity of concrete filled steel tube reinforced concrete (CFSTRC) bridge columns accurately. Based on the calculation results of fiber model, the model took PΔ effect into account and divided the deformation into three components, namely flexural deformation, shear deformation and reinforcement slip deformation. The plastic hinge model was used to estimate flexure deformation, the axialFlexureShearInteraction (AFSI) method was utilized to predict shear deformation, and the reinforcement slip model was employed to calculate reinforcement slip deformation. The proposed model and plastic hinge model were utilized to predict the deformation of three test specimens provided by literatures. Results of the proposed model show good correlation with experimental values. While the plastic hinge model cannot take shear deformation into account, the results of plastic hinge model are smaller than the experimental data. Results show that shear deformation cannot be ignored when CFSTRC bridge columns are subjected to axial compression and lateral load. The proposed model can evaluate the nonlinear deformation of CFSTRC bridge columns during the whole loading process under the combination of axial load, shear and bending moment. Therefore the calculation model can be used to evaluate the deformation of CFSTRC bridge columns and gives reliable prediction.



Published: 14 January 2017
CLC:     
  U 443.22  
  TU 392.3  
Cite this article:

WANG Zhen,WANG Jing quan,QI Jia nan. Computing model for deformation capacity of concrete filled steel tube reinforced concrete bridge columns. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(5): 864-870.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008973X.2016.05.008     OR     http://www.zjujournals.com/eng/Y2016/V50/I5/864


钢管混凝土组合桥墩变形能力计算模型

为准确预测钢管混凝土组合(CFSTRC)桥墩的变形能力,提出考虑剪切和纵筋滑移影响的计算模型. 该模型基于纤维模型计算结果,考虑PΔ效应,将桥墩变形分为弯曲变形、剪切变形和纵筋滑移变形3部分,分别采用塑性铰模型、压弯剪耦合作用分析方法及纵筋滑移模型计算桥墩的弯曲变形、剪切变形和纵筋滑移变形. 利用计算模型与塑性铰模型对3根已知试件分别进行计算,建议模型计算结果与试验值吻合较好,塑性铰模型不能考虑剪切变形影响,计算结果较试验值偏小. 结果表明:CFSTRC桥墩在轴压力和水平荷载共同作用下的剪切变形不容忽视;利用建议模型能够得到CFSTRC桥墩在压剪弯共同作用下的非线性变形全过程,结果可信,可用于CFSTRC桥墩的变形计算.

[1] 卓卫东, 范立础. 延性桥墩塑性铰区最低约束箍筋用量[J]. 土木工程学报, 2002, 35(5): 47-51.
ZHUO Weidong, FAN Lichu. Minimum quantity of confining lateral reinforcement in the potential plastic hinge regions of ductile bridge piers [J]. China Civil Engineering Journal, 2002, 35(5): 47-51.
[2] PARK R, PAULAY T. Reinforced concrete structures [M]. New York: John Wiley & Sons, 1975: 221-235.
[3] 李惠, 王震宇. 钢管高强混凝土叠合柱抗震性能与受力机理的试验研究[J]. 地震工程与工程振动, 1999, 19(3): 27-33.
LI Hui, WANG Zhenyu. Experimental research on mechanism and seismic performance of laminated column with steel tube filled with highstrength concrete [J]. Earrhquake Engineering and Engineering Vibration, 1999, 19(3): 27-33.
[4] 钱稼茹, 康洪震. 钢管高强混凝土组合柱抗震性能试验研究[J]. 建筑结构学报, 2009 (4): 85-93.
QIAN Jiaru, KANG Hongzhen. Experimental study on seismic behavior of highstrength concretefilled steel tube composite columns [J]. Journal of Building Structures, 2009, 30(4): 85-93.
[5] HAN L H, LIAO F Y, TAO Z, et al. Performance of concrete filled steel tube reinforced concrete columns subjected to cyclic bending [J]. Journal of Constructional Steel Research, 2009, 65(8): 1607-1616.
[6] 廖飞宇, 韩林海. 方形钢管混凝土叠合柱的力学性能研究[J]. 工程力学, 2010, 27(4): 153-162.
LIAO Feiyu, HAN Linhai. Performance of concretefilled steel tube reinforced concrete columns with square sections[J]. Engineering Mechanics, 2010, 27(4): 153-162.
[7] JI X, KANG H, CHEN X, et al. Seismic behavior and strength capacity of steel tube‐reinforced concrete composite columns [J]. Earthquake Engineering & Structural Dynamics, 2014, 43(4): 487-505.
[8] ZHANG J, XU S Y, TANG Y. Inelastic Displacement Demand of Bridge Columns Considering Shear–Flexure Interaction [J]. Earthquake Engineering & Structural Dynamics, 2011, 40(7): 731-748.
[9] MOSTAFAEI H, VECCHIO F J, KABEYASAWA T. Deformation capacity of reinforced concrete columns [J]. ACI Structural Journal, 2009, 106(2): 187-195.
[10] MOSTAFAEI H, KABEYASAWA T. Axialshearflexure interaction approach for reinforced concrete columns [J]. ACI Structural Journal, 2007, 104(2): 218-226.
[11] BAI Z Z, AU F T K. Ductility of symmetrically reinforced concrete columns [J]. Magazine of Concrete Research, 2009, 61(5): 345-357.
[12] 叶列平. 混凝土结构 [M]. 2版. 北京: 清华大学出版社, 2005: 1920.
[13] MANDER J B, PRIESTLEY M J N, PARK R. Theoretical stressstrain model for confined concrete [J]. Journal of Structural Engineering, 1988, 114(8): 1804-1826.
[14] 范立础, 卓卫东. 桥梁延性抗震设计[M]. 北京: 人民交通出版社, 2001: 152-153.
[15] 李秉南, 戴航, 张继文. 圆端形铁路桥墩变形能力分析方法研究[J]. 铁道工程学报, 2014, 31(3): 76-81.
LI Bingnan, DAI Hang, ZHANG Jiwen. Study on deformation capacity analysis method of roundended railway bridge piers [J]. Journal of Railway Engineering Society, 2014, 31(3): 76-81.
[16] MOSTAFAEI H, VECCHIO F J. Uniaxial shearflexure model for reinforced concrete elements [J]. Journal of Structural Engineering, 2008, 134(9): 15381547.
[17] 朱伟庆, 贾金青, 孟刚. 基于修正压力场理论的型钢超高强混凝土柱受剪承载力研究[J]. 建筑结构学报, 2013, 34(10): 101-107.
ZHU Weiqing, JIA Jinqing, MENG Gang. Shear strength of steel reinforced high strength concrete columns based on modified compression field theory [J]. Journal of Building Structures, 2013, 34(10): 101-107.
[18] SEZEN H, SETZLER E J. Reinforcement slip in reinforced concrete columns [J]. ACI Structural Journal, 2008, 105(3): 280-289.
[19] 艾庆华, 王东升, 李宏男, 等. 基于塑性铰模型的纵筋混凝土桥墩地震损伤评价[J]. 工程力学, 2009, 26(4): 158-166.
AI Qinghua, WANG Dongsheng, LI Hongnan, et al. Seismic damage evaluation of RC bridge columns based on plastic hinge model [J]. Engineering Mechanics, 2009, 26(4): 158-166.
[20] LI Y A, HUANG Y T, HWANG S J. Seismic response of reinforced concrete short columns failed in shear [J]. ACI Structural Journal, 2014, 111(4): 945-954.
[21] BRACHMANN I, BROWNING J A, MATAMOROS A. Driftdependent confinement requirements for reinforced concrete columns under cyclic loading [J]. ACI Structural Journal, 2004, 101(5): 669-677.
[22] SEZEN H, MOEHLEoehle J P. Seismic tests of concrete columns with light transverse reinforcement [J]. ACI Structural Journal, 2006, 103(6): 842-849.

[1] DONG Kai, LAI Jun ying, QIAN Xiao qian, ZHAN Shu lin, RUAN Fang. Energy efficiency of residential buildings with horizontal external shading in hot summer and cold winter zone[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1431-1437.
[2] LI Jia qi, FAN Li wu, YU Zi tao. Boiling heat transfer characteristics during quench cooling on superhydrophilic surface[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1493-1498.
[3] CHIANG Yen ming, ZHANG Jian quan, MING Yan. Flood forecasting by ensemble neural networks[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1471-1478.
[4] ZHONG Wei, PENG Liang, ZHOU Yong gang, XU Jian, CONG Fei yun. Slagging diagnosis of boiler based on wavelet packet analysis and support vector machine[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1499-1506.
[5] XIA Yu feng, REN Li, YE Cai hong, WANG Li. Multi-objective optimization of locators layout of reinforced panel based on RSM[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1600-1607.
[6] LI Lin yu, WU Zhang hua, YU Guo yao, DAI Wei, LUO Er cang.
Experimental investigation on electroacoustic conversion characteristic of linear compressor
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1529-1536.
[7] QU Wei wei, TANG Wei, BI Yun bo, LI Shao bo, LUO Shui jun. Pre-joining processes plan to avoid forced assemblies and improve efficiency[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1561-1569.
[8] HU Xiao dong, GU Lin yi, ZHANG Fan meng. High-speed on/off valves applied in digital displacement motor[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1551-1560.
[9] YANG Shu, LIU Guo ping, QI Chang, WANG Da zhi. Simulation and optimization for anti-shock performances of graded metal hollow sphere foam structure[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1593-1599.
[10] YANG Zhang, TONG Gen shu, ZHANG Lei. Effective Rigidity of two one-side stiffeners arranged symmetrically[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1446-1455.
[11] JIANG Xiang, TONG Gen shu, ZHANG Lei. Experiments on fire-resistance performance of fire-resistant steel-concrete composite beams[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1463-1470.
[12] SHAN Hua feng, XIA Tang dai, YU Feng, HU Jun hua,PAN Jin long. Buckling stability analysis on critical load of underpinning pile for excavation beneath existing building[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1425-1430.
[13] GU Tian lai, ZHANG Shuai, ZHENG Yao. Back pressure characteristics of jaws inlet with constant-area isolator[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(7): 1418-1424.
[14] CHENG Shi wei, LU Yu hua, CAI Hong gang. Mobile device based eye tracking technology[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(6): 1160-1166.
[15] ZHENG Cheng zhi, GAO Jin liang, HE Wen jie. Leakage discharge analysis model based on FastICA algorithm[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(6): 1031-1039.