Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (10): 2038-2046    DOI: 10.3785/j.issn.1008-973X.2020.10.022
    
Identification of switch rail brakeage in high speed railway turnout based on elastic wave propagation
Ping WANG1,2,Le LIU1,2,Chen-yang HU1,2,Zheng GONG1,2,Jing-mang XU1,2,*(),Zhi-xin WANG3
1. Key Laboratory of High-speed Railway Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
2. College of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
3. CRSC Research and Design Institute Group Limited Company, Beijing 100073, China
Download: HTML     PDF(1314KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The identification of high-speed switch rail break based on elastic wave propagation was analyzed aiming at the monitoring problem of high-speed switch rail break. The explicit finite element method was used to establish an analytical model for the elastic wave propagation characteristics of high-speed turnouts, in which the constraints such as switch closure and the support of the sliding bed platform were considered. The model was verified by experiment. The effects of different excitation frequency, fracture position of switch rail and the close-contact state on the elastic wave propagation characteristics of the high-speed turnout were analyzed. Results showed that the elastic wave energy of 2 kHz and 4 kHz was concentrated in the healthy rail, and the signal propagation was basically not affected by the constraints of stock rail and slide bed platen. In the process of broken rail identification, the signal transmitted by slide bed platen attenuated to above 109, and the signal transmitted by switch closure had significant influence of elastic waves of various frequencies. Broken rail position was related to the signal of elastic wave propagation under close contact.



Key wordshigh-speed turnout      switch rail fracture      elastic wave propagation      broken rail detection      time-frequency analysis     
Received: 21 December 2019      Published: 28 October 2020
CLC:  U 216  
Corresponding Authors: Jing-mang XU     E-mail: mang080887@163.com
Cite this article:

Ping WANG,Le LIU,Chen-yang HU,Zheng GONG,Jing-mang XU,Zhi-xin WANG. Identification of switch rail brakeage in high speed railway turnout based on elastic wave propagation. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2038-2046.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.10.022     OR     http://www.zjujournals.com/eng/Y2020/V54/I10/2038


基于弹性波传播的高速道岔尖轨断轨识别

针对高速道岔尖轨断轨监测问题,开展基于弹性波传播的高速道岔尖轨断轨识别研究. 采用显式有限元方法建立高速道岔弹性波传播特性分析模型,模型中考虑尖轨与基本轨密贴状态、滑床台板支承等约束条件,结合试验对该模型进行验证. 研究不同激励频率、尖轨断轨位置及密贴状态等因素对高速道岔尖轨弹性波传播特性的影响. 研究表明:在健康尖轨中,2 kHz和4 kHz弹性波能量集中,传播信号基本不受基本轨和滑床台等约束条件的影响;在断轨识别中,通过滑床台传播的信号衰减倍数大于109,通过尖/基轨密贴传播的信号对各个频率弹性波的断轨识别均存在显著影响;在密贴状况下,断轨位置与弹性波传播信号存在一定的关联.


关键词: 高速道岔,  尖轨断轨,  弹性波传播,  断轨识别,  时频分析 
Fig.1 Switch model figure
Fig.2 Switch rail model and excitation signal figure
Fig.3 Signal comparison of switch rail model
f/kHz d/mm
2 160
4 80
10 32
30 10.6
Tab.1 Mesh size of elastic waves with different frequencies
Fig.4 Layout of measuring points and sensors
Fig.5 Time domain comparison chart of model simulation and field test for elastic wave propagation analysis
Fig.6 Time-frequency diagram of model simulation and field test for elastic wave propagation analysis
Fig.7 Section and dispersion characteristic curve of 60D40 rail
Fig.8 Layout of switch rail excitation position and receiving position
Fig.9 Broken rail figure
Fig.10 Time-frequency diagram of point A in different frequency and different working condition under repulsion state
f/kHz A1 A2 A3
2 1.92 1.98×109 1.89×109
4 15 1.03×109 2.37×109
10 22 1.43×1010 1.37×1010
30 8.03×103 1.04×1011 4.63×1012
Tab.2 Attenuation multiple of signal under repulsion state
Fig.11 Time-frequency diagram of point A in different frequency and working condition under close contact
f/kHz A1 A2 A3
2 1.78 21 47
4 12 5.56×102 5.98×102
10 45 3.05×103 5.98×102
30 1.08×104 7.50×106 1.12×107
Tab.3 Attenuation multiple of signal under closely contact
f/kHz B1 B2
2 1.92 1.78
4 15 12
10 22 45
30 8.03×103 1.08×104
Tab.4 Attenuation multiple of health switch rail signal
[1]   王平. 高速铁路道岔设计理论与实践[M]. 成都: 西南交通大学出版社, 2011.
[2]   张辉, 宋雅男, 王耀南, 等 钢轨缺陷无损检测与评估技术综述[J]. 仪器仪表学报, 2019, 40 (2): 11- 25
ZHANG Hui, SONG Ya-nan, WANG Yao-nan, et al Review of rail defect non-destructive testing and evaluation[J]. Chinese Journal of Scientific Instrument, 2019, 40 (2): 11- 25
[3]   中华人民共和国铁道部. 钢轨探伤管理规则[M]. 北京: 中国铁道出版社, 2009.
[4]   易强, 王平, 赵才友, 等 有砟轨道结构弹性波传播特性研究[J]. 铁道学报, 2019, 41 (6): 137- 145
YI Qiang, WANG Ping, ZHAO Cai-you, et al Study on elastic wave propagation properties of ballast track structure[J]. Journal of the China Railway Society, 2019, 41 (6): 137- 145
doi: 10.3969/j.issn.1001-8360.2019.06.019
[5]   HAYASHI T, SONG W J, ROSE J L Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example[J]. Ultrasonics, 2003, 41 (3): 175- 183
doi: 10.1016/S0041-624X(03)00097-0
[6]   卢超, 李诚, 常俊杰 钢轨轨底垂直振动模式导波检测技术的实验研究[J]. 实验力学, 2012, 27 (5): 593- 600
LU Chao, LI Cheng, CHANG Jun-jie Experimental investigation on guided wave detection technology for rail bottom vertical vibration mode[J]. Journal of Experimental Mechanics, 2012, 27 (5): 593- 600
[7]   朱力强, 许西宁, 余祖俊, 等 基于超声导波的钢轨完整性检测方法研究[J]. 仪器仪表学报, 2016, 37 (7): 1603- 1609
ZHU Li-qiang, XU Xi-ning, YU Zu-jun, et al Study on the railway integrity monitoring method based on ultrasonic guided waves[J]. Chinese Journal of Scientific Instrument, 2016, 37 (7): 1603- 1609
doi: 10.3969/j.issn.0254-3087.2016.07.021
[8]   何存富, 刘青青, 焦敬品, 等 基于振动模态分析的钢轨中超声导波传播特性数值计算方法[J]. 振动与冲击, 2014, 33 (3): 9- 13
HE Cun-fu, LIU Qing-qing, JIAO Jing-pin, et al Propagation characteristics of ultrasonic guided wave in rails based on vibration modal analysis[J]. Journal of Vibration and Shock, 2014, 33 (3): 9- 13
doi: 10.3969/j.issn.1000-3835.2014.03.004
[9]   范振中. 铁路道岔尖轨及长心轨导波检测技术研究[D]. 北京: 中国铁道科学研究院, 2016.
FAN Zhen-zhong. Research on guided wave detection technology of railway turnout switch rail and long point rail [D]. Beijing: China Academy of Railway Sciences, 2016.
[10]   付连著, 伍建军, 郎向伟, 等 基于超声导波的道岔尖轨伤损监测试验研究[J]. 铁道建筑, 2018, 58 (5): 124- 128
FU Lian-zhu, WU Jian-jun, LANG Xiang-wei, et al Experimental research on switch rail damage monitoring using ultrasonic guided waves[J]. Railway Engineering, 2018, 58 (5): 124- 128
[11]   胡剑虹, 唐志峰, 蒋金洲, 等 道岔钢轨轨底缺陷的导波检测技术研究[J]. 中国铁道科学, 2014, 35 (3): 34- 40
HU Jian-hong, TANG Zhi-feng, JIANG Jin-zhou, et al Research on guided wave inspection technology for rail base defect of turnout[J]. China Railway Science, 2014, 35 (3): 34- 40
doi: 10.3969/j.issn.1001-4632.2014.03.06
[12]   ZHANG J R, MA H Y, YAN W J, et al Defect detection and location in switch rails by acoustic emission and Lamb wave analysis: a feasibility study[J]. Applied Acoustics, 2016, 105: 67- 74
doi: 10.1016/j.apacoust.2015.11.018
[13]   严寅中. 基于超声导波的尖轨探伤的数值仿真与实验研究[D]. 广州: 暨南大学, 2015.
YAN Yin-zhong. Experimental and numerical studies of damage detection in the switch rail using ultrasonic guided wave [D]. Guangzhou: Jinan University, 2015.
[14]   BURGER F A. A practical continuous operating rail break detection system using guided waves [C] // 18th World Conference on Nondestructive Testing. Durban: NDT, 2012.
[15]   LOVEDAY P, RAMATLO D, BURGER F A. Monitoring of rail track using guided wave ultrasound [C] // Proceedings of the 19th World Conference on Non Destructive Testing. Munich: NDT, 2016: 3341-3348.
[16]   李文超, 张丕状 超声波检测钢轨缺陷及定位的研究[J]. 核电子学与探测技术, 2012, 32 (9): 1062- 1065
LI Wen-chao, ZHANG Pi-zhuang The research of ultrasonic testing rail defects and the positioning[J]. Nuclear Electronics and Detection Technology, 2012, 32 (9): 1062- 1065
doi: 10.3969/j.issn.0258-0934.2012.09.016
[17]   张友鹏, 任远 基于超声导波的实时钢轨断裂检测方法研究[J]. 铁道工程学报, 2010, 27 (11): 47- 51
ZHANG You-peng, REN Yuan Research on real-time detection method for broken rail based on ultrasonic guided wave[J]. Journal of Railway Engineering Society, 2010, 27 (11): 47- 51
doi: 10.3969/j.issn.1006-2106.2010.11.011
[1] TONG Shui-guang, ZHANG Yi-dong, XU Jian, CONG Fei-yun. Spectral band refined composite multiscale fuzzy entropy and its application in fault diagnosis of rolling bearings[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(8): 1509-1516.
[2] ZHENG Xu, HAO Zhi-yong, JIN Yang, LU Zhao-gang. Studying noise contributions of IC engine via MEEMD method[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(5): 954-960.