Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (7): 1351-1360    DOI: 10.3785/j.issn.1008-973X.2021.07.014
    
Wind-induced response of crane structure with double flat arms for long-span transmission towers
Ming-feng HUANG1(),Xin-rui WEI1,He-kai YE1,Jian-yun YE2,Wen-juan LOU1
1. Institute of Structural Engineering, Zhejiang University, Hangzhou 310058, China
2. Zhejiang Electric Power Transmission & Transformation Corporation, Hangzhou 310016, China
Download: HTML     PDF(5041KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Based on the high-frequency force-balance wind tunnel test, the aerodynamic force coefficients of the crane structure were obtained under different wind direction angles and positions of double flat arms. Several finite element models of crane structure with double flat arms were established corresponding to typical working conditions of crane structure during the whole construction process. Wind-induced dynamic response analysis was carried out in time domain and the gust response factors of the crane structure were calculated under various working conditions and different wind directions. The calculated gust response factors were compared with the values derived from the design code of high-rise structures. Results show that the calculated gust response factors based on time history analysis for the body of crane structure exhibit more complicated behavior along the height than ones from the design code. Compared to the time history analysis, the design code overestimates the gust response factors for the top cantilever part of the crane structure, which is above the first guylines. Considering the most critical wind conditions, the gust response factor is calculated as 3.05 under 0 degree wind while the gust response factors of 2.24 (x-direction) and 2.28 (y-direction) are obtained for two orthogonal directions under 45 degree wind.



Key wordscrane structure      wind tunnel test      finite element analysis      wind-induced dynamic response      gust response factor     
Received: 16 May 2020      Published: 05 July 2021
CLC:  TU 311  
  P 315.9  
Fund:  国家自然科学基金资助项目(51838012);浙江省基础公益研究计划资助项目(LGG18E080001)
Cite this article:

Ming-feng HUANG,Xin-rui WEI,He-kai YE,Jian-yun YE,Wen-juan LOU. Wind-induced response of crane structure with double flat arms for long-span transmission towers. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1351-1360.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.07.014     OR     https://www.zjujournals.com/eng/Y2021/V55/I7/1351


大跨越钢管塔双平臂抱杆的风致响应

基于风洞高频天平测力试验,获取抱杆结构在不同风向角和平臂姿态条件下的体型系数;建立施工全过程中典型工况下双平臂抱杆有限元模型,计算得到抱杆结构在多种施工工况和不同风向下的动力时程响应和风振系数,并与高耸结构设计规范的风振系数取值进行比较分析. 结果表明,对于抱杆杆身部分,基于时程分析的风振系数结果沿高度变化规律比规范风振系数更加复杂;对于第一道腰环拉索以上部分,即抱杆顶部悬臂部分,规范给出的风振系数较为保守,显著大于时程分析方法风振系数. 对于抗风最不利工况,抱杆顶部在0°和45°风向角下的时程风振系数分别达到3.05,2.24(45°x向)和2.28(45°y向).


关键词: 抱杆结构,  风洞试验,  有限元分析,  风振响应,  风振系数 
Fig.1 Construction of transmission tower and crane structure with double flat arms
Fig.2 Wind tunnel model of crane structure with double flat arms
Fig.3 Wind direction angle and position of double flat arms for wind tunnel test
平臂姿态 $\theta $/(°)
0°、15°、30°、45°、60°、75°、90°;
22.5° 22.5°、37.5°、52.5°、67.5°、82.5°、97.5°、112.5°;
45° 45°、60°、75°、90°、105°、120°、135°
Tab.1 Wind direction angles for wind tunnel test
Fig.4 Aerodynamic force coefficients of standard section of crane structure
$\theta $/(°) μ s 误差/%
风洞试验 文献[18]
0 2.41 2.31 ?4.15
45 2.80 2.81 0.36
90 2.16 2.31 6.94
Tab.2 Comparisons of aerodynamic force coefficients for standard section of crane structure
平臂姿态 $\theta $/(°) Cx 误差/% Cy 误差/%
文献[18] 风洞试验 文献[18] 风洞试验
0 2.23 2.26 ?1.33 0 ?0.03
45.0 1.71 1.89 ?9.52 1.56 1.68 ?7.14
90.0 0 0.23 1.90 1.72 10.47
22.5° 22.5 2.07 2.13 ?2.82 0.92 1.04 ?11.54
22.5° 67.5 0.93 1.02 ?8.82 1.83 2.26 ?19.03
22.5° 112.5 ?0.79 ?0.53 49.06 1.76 1.81 2.76
45° 45.0 1.79 1.58 13.29 1.79 1.90 ?5.79
45° 90.0 0.11 0.17 ?35.29 2.02 2.24 ?9.82
45° 135.0 ?1.55 ?1.14 35.96 1.55 1.41 9.93
Tab.3 Comparisons of aerodynamic force coefficients for complete crane structure with double flat arms
Fig.5 Typical working conditions of crane structure during tower construction
Fig.6 Wind loading positions of crane structure
Fig.7 Time histories of wind force at top standard section of crane structure under zero degree wind
Fig.8 Time histories of wind force on double flat arms and top part of crane structure under zero degree wind
Fig.9 Finite element model of guyed crane structure with double flat arms
Fig.10 Natural vibration frequency of four working conditions of guyed crane structure with double flat arms
Fig.11 First three vibration formation of fourth working condition of guyed crane structure with double flat arms
Fig.12 Time history displacements at key location of crane structure under 45° wind angle
Z/m β1 β2
45°x 45°y 45°x 45°y
364.7 1.41 1.36 1.32 1.37 1.01 1.02
370.8 1.51 1.46 1.47 1.21 1.06 1.02
376.9 1.74 1.60 1.60 1.71 1.13 1.14
383 2.20 1.82 1.80 2.02 1.37 1.34
389 2.42 2.03 2.00 2.29 1.61 1.69
396.2 2.62 2.23 2.26 2.62 1.81 1.82
403.4 2.85 2.35 2.36 2.84 2.15 2.01
410.5 2.92 2.46 2.50 2.89 2.18 2.05
417.8 2.99 2.51 2.52 2.92 2.18 2.11
424.8 3.08 2.56 2.60 2.95 2.20 2.21
432.2 3.17 2.62 2.67 3.05 2.24 2.28
Tab.4 Comparisons of gust response factors of crane structure for case four
Fig.13 Comparisons of gust response factors of crane structure under four working conditions and 0° wind angle
Fig.14 Comparisons of gust response factors of crane structure under four working conditions and 45° wind angle
[1]   周焕林, 叶建云, 罗义华 舟山大跨越高塔抱杆现场试验[J]. 电力建设, 2009, 30 (8): 63- 65
ZHOU Huan-lin, YE Jian-yun, Luo Yi-hua Site test of holding poles used in Zhoushan large high crossing tower[J]. Electric Power Construction, 2009, 30 (8): 63- 65
doi: 10.3969/j.issn.1000-7229.2009.08.016
[2]   潘峰, 童建国, 盛晓红, 等 1 000 kV大型薄壁钢管变电构架风致振动响应研究[J]. 工程力学, 2009, 26 (10): 203- 210
PAN Feng, TONG Jian-guo, SHENG Xiao-hong, et al Wind-induced dynamic response of large thin-walled steel tube frame for 1 000 kV substation[J]. Engineering Mechanics, 2009, 26 (10): 203- 210
[3]   马晋, 王子通, 周岱, 等 典型塔式起重机塔架结构风致动力响应与疲劳分析[J]. 上海交通大学学报, 2014, 48 (6): 804- 808
MA Jin, WANG Zi-tong, ZHOU Dai, et al Analysis of Wind-Induced vibration and fatigue effects of a typical tower crane[J]. Journal of Shanghai Jiaotong University, 2014, 48 (6): 804- 808
[4]   高松, 杨文刚, 朱伯文 特高压单柱拉线塔风振系数研究[J]. 建筑结构, 2016, 46 (Suppl. 2): 426- 430
GAO Song, YANG Wen-gang, Zhu Bo-wen Analysis on wind-induced vibration coefficient of UHV single-mast guyed tower[J]. Building Structure, 2016, 46 (Suppl. 2): 426- 430
[5]   邓洪洲, 徐海江, 马星 桅杆结构风振系数研究[J]. 振动与冲击, 2016, 35 (22): 48- 53
DENG Hong-zhou, XU Hai-jiang, MA Xing Wind-vibration coefficient of guyed masts[J]. Journal of Vibration and Shock, 2016, 35 (22): 48- 53
[6]   邓洪洲, 张利, 庞金来 桅杆结构风振系数计算方法研究[J]. 特种结构, 2017, 34 (2): 1- 7
DENG Hong-zhou, ZHANG Li, PANG Jin-lai Study on the calculation method for wind vibration coefficient of guyed masts[J]. Special Structures, 2017, 34 (2): 1- 7
[7]   赵爽, 晏致涛, 李正良, 等 基于风洞试验的苏通大跨越输电塔风振系数研究[J]. 建筑结构学报, 2019, 40 (11): 35- 44
ZHAO Shuang, YAN Zhi-tao, LI Zheng-liang, et al Investigation on wind-induced vibration coefficients of Sutong long span transmission tower based on wind tunnel tests[J]. Journal of Building Structures, 2019, 40 (11): 35- 44
[8]   史国富, 屠海明 一体化通信基站风振响应及风振计算研究[J]. 特种结构, 2020, 37 (2): 108- 112
SHI Guo-fu, TU Hai-ming Calculation and analysis on wind-induced vibration response of integrated communication base station[J]. Special Structures, 2020, 37 (2): 108- 112
[9]   柯世堂, 王晓海, 徐璐. 高三管集束式钢烟囱风致响应与风振系数研究[J/OL]. 建筑结构学报(2020-06-22). https://doi.org/10.14006/j.jzjgxb.2019.0769.
KE Shi-tang, WANG Xiao-hui, XU Lu. Study on wind-induced response and wind vibration coefficient of a high three-tube cluster steel chimney [J/OL]. Journal of Building Structures (2020-06-22). https://doi.org/10.14006/j.jzjgxb.2019.0769.
[10]   杨文刚, 王璋奇, 朱伯文, 等 特高压单柱拉线塔塔线体系风振响应时程分析[J]. 中国电机工程学报, 2015, 35 (12): 3182- 3191
YANG Wen-gang, WANG Zhang-qi, ZHU Bo-wen, et al Time history analysis on wind-induced response of UHV guyed single-mast transmission tower-line system[J]. Proceedings of the CSEE, 2015, 35 (12): 3182- 3191
[11]   GANI F G, LÉGERON F L Dynamic response of transmission lines guyed towers under wind loading[J]. Canadian Journal of Civil Engineering, 2010, 37 (3): 450- 465
doi: 10.1139/L09-160
[12]   HAMADA A, DAMATTY A Behavior of guyed transmission line structures under tornado wind loading[J]. Computers and Structures, 2011, 89 (11-12): 986- 1003
doi: 10.1016/j.compstruc.2011.01.015
[13]   HAMADA A, EI DAMATTY A A Failure analysis of guyed transmission lines during F2 tornado event[J]. Engineering Structures, 2015, 85: 11- 25
doi: 10.1016/j.engstruct.2014.11.045
[14]   HAMADA A, KING J P C, EI DAMATTY A A, et al The response of a guyed transmission line system to boundary layer wind[J]. Engineering Structures, 2017, 139: 135- 152
doi: 10.1016/j.engstruct.2017.01.047
[15]   LADUBEC C, DAMATTY A E, ANSARY A E Effect of geometric nonlinear behavior of a guyed transmission tower under downburst loading[J]. Applied Mechanics and Materials, 2012, 226-228: 1240- 1249
doi: 10.4028/www.scientific.net/AMM.226-228.1240
[16]   LORENZO I F, ELENA B C, PM RODRÍGUEZ, et al Dynamic analysis of self-supported tower under hurricane wind conditions[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 197: 104078
doi: 10.1016/j.jweia.2019.104078
[17]   建筑结构荷载规范: GB 50009—2012[S]. 北京: 中国建筑工业出版社, 2012.
[18]   高耸结构设计标准: GB 50135—2019[S]. 北京: 中国计划出版社, 2019.
[19]   HUANG M F, LOU W, YANG L, et al Experimental and computational simulation for wind effects on the Zhoushan transmission towers[J]. Structure and Infrastructure Engineering, 2012, 8 (8): 781- 799
doi: 10.1080/15732479.2010.497540
[20]   肖正直, 李正良, 汪之松, 等 基于HFFB试验的特高压输电塔风振响应分析[J]. 工程力学, 2010, 27 (4): 218- 225
XIAO Zheng-zhi, LI Zheng-liang, WANG Zhi-song, et al Wind-induced vibration analysis of UHV transmission tower based on the HFFB tests[J]. Engineering Mechanics, 2010, 27 (4): 218- 225
[21]   冯鹤, 黄铭枫, 李强, 等 大跨干煤棚网壳风振时程分析和等效静风荷载研究[J]. 振动与冲击, 2016, 35 (1): 164- 172
FENG He, HUANG Ming-feng, LI Qiang, et al Wind-induced vibration time history analysis and equivalent static wind loads for long-span lattice shells[J]. Journal of Vibration and Shock, 2016, 35 (1): 164- 172
[1] Jie WANG,Zhao LI,Zi-ran LI. Research on tread wear behavior of all steel radial truck tire[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1615-1624.
[2] Wei WANG,Hao-tian ZHAO,Chao-chao QUAN,Hong-lai SONG,Yu LI,Yi-xiang ZHOU. Shear bearing capacity of vertical corrugated steel plate shear wall with replaceable toe[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1407-1418.
[3] Xing-yu ZENG,Jun-yang LI,Jia-xu WANG,Ting TANG,Cong LI. Design and modification of harmonic double circular arc tooth profile based on finite element method[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1548-1557.
[4] Jun-xia JIANG,Hai-peng LIAO. Stiffness modeling and structure optimization of heavy-duty intelligent stacking equipment[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1948-1959.
[5] Guo-hui SHEN,Yu-nan BAO,Yong GUO,Gang SONG,Yi-wen WANG. Along-line wind loads and distribution patterns of transmission lines[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1658-1665.
[6] Kai-jun LOU,Feng YU,Tang-dai XIA,Jian MA. Stability analysis of diaphragm wall retained structure in clay[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1697-1705.
[7] Zheng ZHANG,Hao ZHANG,Hao CHAI,Hua-ping WU,Shao-fei JIANG. Design and performance analysis of variable stiffness multi-stable composite laminate structure[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1341-1346.
[8] Yong CHEN,Yong-quan LI,Chong-lei XIE,Kuang-liang QIAN,Ye-sheng ZHANG,Peng-yun CHENG,Xuan-zuo YE. Pushover test study of masonry structure restrained by steel-tube-bundle shear walls[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 499-511.
[9] Li-guo WANG,Xu-dong SHAO,Jun-hui CAO,Yu-bao CHEN,Guang HE,Yang WANG. Performance of steel-ultrathin UHPC composite bridge deck based on ultra-short headed studs[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2027-2037.
[10] Shui-guang TONG,Jia-zhi MIAO,Zhe-ming TONG,Shun HE,Shu-feng XIANG,Xiang-hui SHUAI. Finite element analysis and optimization for static and dynamic characteristics of diesel forklift frame[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1637-1646.
[11] Hao-su LIU,Jun-qing LEI. Identification of three-component coefficients of double deck truss girder for long-span bridge[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1092-1100.
[12] Shao-heng HE,Tang-dai XIA,Lian-xiang LI,Bing-qi YU,Ze-yong LIU. Influence of groundwater seepage on deformation of foundation pits with suspended impervious curtains[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 713-723.
[13] Wen-qiang DAI,Xu ZHENG,Zhi-yong HAO,Yi QIU. Prediction of high-speed train interior noise using energy finite element analysis[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2396-2403.
[14] Ming-feng HUANG,He-kai YE,Wen-juan LOU,Xuan-tao SUN,Jian-yun YE. Wind-induced vibration and fatigue analysis of long span lattice structures considering distribution of wind speed and direction[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1916-1926.
[15] LOU Wen-juan, LIANG Hong-chao, BIAN Rong. Apply member loads to calculate wind load shape coefficient of angle-made-transmission tower[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(9): 1631-1637.