Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (10): 1916-1926    DOI: 10.3785/j.issn.1008-973X.2019.10.009
Civil Engineering     
Wind-induced vibration and fatigue analysis of long span lattice structures considering distribution of wind speed and direction
Ming-feng HUANG1(),He-kai YE1,Wen-juan LOU1,Xuan-tao SUN1,Jian-yun YE2
1. Institute of Structural Engineering, Zhejiang University, Hangzhou 310058, China
2. Zhejiang Electric Power Transmission and Transformation Corporation, Hangzhou 310016, China
Download: HTML     PDF(5145KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Wind-induced vibration related fatigue analysis of a long-span lattice structure was performed both in the time and frequency domains based on the multiple point pressure measurement wind tunnel test data according to the Miner’s linear cumulative damage theory in order to analyze the wind-induced fatigue damage of long span lattice structures under wind load. Four methods were applied for estimating wind-induced damage on the structure, i.e., the time domain rain-flow method, the equivalent stress method, the equivalent narrow band method and the equivalent wide band method. The influences of the joint distribution of wind speed and direction on the fatigue damage of the structure were carefully assessed by constructing the joint probabilistic distribution function. The wind-induced fatigue damage of spherical joints in the steel lattice structure was evaluated with the empirical formula of high-strength bolt stresses. Results show that the equivalent wide band method is a more accurate method for fatigue damage calculation in frequency domain. The fatigue damage of the lattice structure is more likely to occur under the wind directions of 40°~60° compared with other wind direction angles. The cumulative fatigue damage of spherical joints is more significant than that of the structural members themselves considering the joint distribution of wind speed and direction.



Key wordswind tunnel test      vibration analysis      fatigue analysis      joint distribution of wind speed and direction     
Received: 07 November 2018      Published: 30 September 2019
CLC:  TU 312  
Cite this article:

Ming-feng HUANG,He-kai YE,Wen-juan LOU,Xuan-tao SUN,Jian-yun YE. Wind-induced vibration and fatigue analysis of long span lattice structures considering distribution of wind speed and direction. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1916-1926.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.10.009     OR     http://www.zjujournals.com/eng/Y2019/V53/I10/1916


考虑风速风向分布的干煤棚结构风振疲劳分析

针对大跨开敞式干煤棚结构在风荷载作用下易发生风致疲劳破坏的问题,基于干煤棚结构的多点同步测压风洞试验结果,结合Miner疲劳线性累积损伤理论,分别采用雨流法、等效应力法、等效窄带法和等效宽带法等时域与频域内多种方法,计算得到干煤棚网架的风致疲劳损伤结果. 通过建立风速风向联合概率密度函数,考虑煤棚所在地实际风速风向联合分布特性对风致疲劳损伤分析的影响,利用高强螺栓应力经验公式,估算网架结构球节点的疲劳损伤. 结果表明,等效宽带法是频域法中较精确的疲劳损伤计算方法. 与其他风向角相比,干煤棚网架结构在40°~60°斜风向作用下更容易引发疲劳损伤. 在考虑风速风向联合分布的条件下,螺栓球节点的年均累积疲劳损伤比杆件本身更显著.


关键词: 风洞试验,  风振分析,  疲劳分析,  风速风向联合分布 
Fig.1 S-N curve for long-span lattice structure in Det Noeske Veritas Recommended Practice
Fig.2 Wind tunnel model of long-span lattice structure
Fig.3 Layout of pressure taps on wind tunnel model
Fig.4 Simulation of wind field in wind tunnel test
Fig.5 FEM model and positions of key members under 60°wind
Fig.6 Displacement time history results of member 1 and member 9 at Y direction
Fig.7 Displacement time history results of member 1 and member 9 at Z direction
Fig.8 Stress time histories for two key members
Fig.9 Power spectral density of stress for two key members
Fig.10 Probability distribution of stress amplitudes for two key members
10?8
θs/(°) 杆件1 杆件2 杆件3 杆件4 杆件5 杆件6 杆件7 杆件8 杆件9 杆件10
0 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01
10 0.72 0.57 0.56 0.42 0.23 0.19 0.16 0.13 0.07 0.03
20 6.54 5.72 5.04 4.77 4.13 2.63 1.60 1.45 1.17 0.89
30 12.48 11.45 10.09 9.30 9.05 6.30 5.11 3.31 3.07 2.72
40 27.28 25.82 24.02 21.73 21.60 15.95 14.74 13.56 12.51 11.06
50 30.44 29.19 17.23 15.05 12.66 8.61 6.50 6.46 5.14 4.36
60 45.67 39.23 33.83 33.06 27.57 18.70 15.57 15.40 14.84 11.26
70 12.52 10.77 10.29 8.72 7.43 5.16 4.75 4.00 2.58 1.99
80 1.49 1.09 1.02 0.71 0.52 0.29 0.21 0.15 0.13 0.13
90 0.75 0.52 0.51 0.29 0.22 0.22 0.17 0.14 0.03 0.03
120 22.07 18.28 16.02 14.24 13.10 8.72 6.84 6.72 6.58 4.23
140 33.97 31.06 27.23 24.94 23.04 17.66 14.08 13.50 8.52 8.51
180 0.07 0.07 0.06 0.05 0.05 0.04 0.02 0.02 0.02 0.01
200 8.65 7.30 6.28 5.65 5.24 3.47 2.45 2.27 2.19 1.05
220 43.79 41.30 37.49 33.55 30.77 23.89 19.67 17.51 14.17 14.09
270 0.51 0.36 0.27 0.22 0.22 0.17 0.15 0.13 0.12 0.11
310 23.75 21.13 18.57 16.81 16.01 11.27 9.66 8.92 8.00 5.36
Tab.1 Accumulated fatigue damage results of 10 members at different wind angles
Fig.11 Locations of members of maximum fatigue damage at different wind angles (lower chords)
杆件序号 D/10?8 w/%
雨流法 等效应力法 等效窄带法 等效宽带法 等效应力法 等效窄带法 等效宽带法
1 30.44 46.55 38.91 32.65 52.92 27.83 7.26
2 29.19 42.12 35.79 32.89 44.30 22.62 12.70
3 17.23 23.39 21.06 20.74 35.75 22.20 20.37
4 15.05 22.25 18.02 13.19 47.89 19.76 ?12.37
5 12.66 15.87 15.32 15.97 25.33 21.01 26.10
6 8.61 9.94 11.05 11.05 15.45 28.34 28.34
7 6.50 9.82 9.08 6.63 51.05 39.66 1.87
8 6.46 6.87 8.34 9.06 6.38 29.12 40.17
9 5.14 6.41 6.80 5.59 24.72 32.31 8.79
10 4.36 5.17 5.60 5.23 18.57 28.31 19.98
Tab.2 Comparison of fatigue damage results of 10 key members under 50° wind
Fig.12 Surrounding topography of structure at Cangnan
Fig.13 Data sequence of daily maximum wind from 1977 to 2016
Fig.14 Wind directional rose of daily maximum wind from 1977 to 2016
Fig.15 Joint probability density function of wind speed and wind direction
杆件 D×t/(mm×mm) S/mm2 $\sigma $/MPa D/10?6
1 159×8 1 947 88.8 6.05
2 159×8 1 947 87.8 5.87
3 180×10 2 748 86.0 5.49
4 159×8 1 947 85.0 5.31
5 159×8 1 947 80.2 4.42
6 219×10 3 360 75.3 3.66
7 159×6 1 470 71.9 3.18
8 159×8 1 947 69.9 2.93
9 180×8 2 211 63.8 2.24
10 159×6 1 470 63.5 2.19
Tab.3 Section size, mean stress and fatigue damage of key members under 60° wind
Fig.16 Constructional drawing of bolted spherical node
Fig.17 Layout of bolted spherical nodes
螺栓球编号 D/10?2 T/a
3.17 31.55
3.08 32.47
2.88 34.72
2.78 35.97
2.32 43.10
1.92 52.08
1.67 59.88
1.54 64.94
1.17 85.47
1.15 86.96
Tab.4 Accumulated fatigue damage results and fatigue life of bolted spherical nodes
[1]   MATSUISKI M, ENDO T Fatigue of metals subjected to varying stress[J]. Japan Society of Mechanical Engineers, 1968, 68 (2): 37- 40
[2]   HUANG X, HANCOCK J W A reliability analysis of fatigue crack growth under random loading[J]. Fatigue Fracture Engineering of Material Structures, 1989, 12 (3): 247- 258
doi: 10.1111/ffe.1989.12.issue-3
[3]   CHAUDHURY G K, DOVER W Fatigue analysis of offshore platforms subject to sea wave loading[J]. International Journal of Fatigue, 1985, 7 (1): 13- 19
doi: 10.1016/0142-1123(85)90003-9
[4]   CHOW C L, LI D L An analytical solution for fast fatigue assessment under wide-band random loading[J]. International Journal of Fatigue, 1991, 13 (5): 395- 404
doi: 10.1016/0142-1123(91)90596-Q
[5]   CRANDALL S H, MARK W D. Random vibration in mechanical systems [M]. New York: Aedaemie Press, 1963: 103-126.
[6]   WIRSCHING P H Fatigue under wide band random stresses[J]. Journal of the Structure Division, 1980, 106 (7): 1593- 1607
[7]   王之宏 桅杆结构的风振疲劳分析[J]. 特种结构, 1994, 11 (3): 3- 8
WANG Zhi-hong Analysis of wind-induced fatigue in guyed steel masts[J]. Special Structures, 1994, 11 (3): 3- 8
doi: 10.3969/j.issn.1001-3598.1994.03.002
[8]   屠海明, 邓洪洲 基于频域的桅杆结构风振疲劳分析[J]. 特种结构, 1999, 15 (4): 34- 36
TU Hai-ming, DENG Hong-zhou The study of guyed mast fatigue based on stress spectrum under wind vibration[J]. Special Structures, 1999, 15 (4): 34- 36
doi: 10.3969/j.issn.1001-3598.1999.04.011
[9]   邓洪洲, 温应龙, 何鹏飞 格构式桅杆顺风向风振疲劳可靠性分析[J]. 特种结构, 2004, 21 (2): 31- 35
DENG Hong-zhou, WEN Ying-long, HE Peng-fei Analysis of fatigue reliability of the lattice guyed-mast along wind vibration[J]. Special Structures, 2004, 21 (2): 31- 35
doi: 10.3969/j.issn.1001-3598.2004.02.013
[10]   王世村, 孙炳楠, 叶尹 自立式单杆输电塔顺风向风振疲劳分析[J]. 浙江大学学报:工学版, 2005, 39 (12): 1880- 1884
WANG Shi-cun, SUN Bing-nan, YE Yin Analysis on alongwind fatigue of free standing single rod transmission tower[J]. Journal of Zhejiang University: Engineering Science, 2005, 39 (12): 1880- 1884
[11]   王世村. 高耸结构风振响应和风振疲劳分析[D]. 杭州: 浙江大学, 2005.
WANG Shi-cun. Studies of wind-induced vibration and wind-induced fatigue on high-rise structures [D]. Hangzhou: Zhejiang University, 2005.
[12]   HOLMES J D Fatigue life under along-wind loading: closed-form solution[J]. Engineering Structures, 2002, 24 (1): 109- 114
doi: 10.1016/S0141-0296(01)00073-6
[13]   REPETTO M P, SOLARI G Directional wind-induced fatigue of slender vertical structure[J]. Journal of Structure Engineering, 2004, 130 (7): 1032- 1040
doi: 10.1061/(ASCE)0733-9445(2004)130:7(1032)
[14]   REPETTO M P, SOLARI G Bimodal alongwind fatigue of structures[J]. Journal of Structure Engineering, 2006, 132 (6): 899- 908
doi: 10.1061/(ASCE)0733-9445(2006)132:6(899)
[15]   REPETTO M P, SOLARI G Closed form solution of the alongwind-induced fatigue damage to structures[J]. Engineering Structures, 2009, 31 (10): 2414- 2425
doi: 10.1016/j.engstruct.2009.05.016
[16]   REPETTO M P, TORRIELLI A Long term simulation of wind-induced fatigue loadings[J]. Engineering Structures, 2017, 132 (1): 551- 561
[17]   GU M, XU Y L, CHEN L Z, et al Fatigue life estimation of steel girder of Yangpu cable -stayed bridge due to buffeting[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 80 (3): 383- 400
doi: 10.1016/S0167-6105(98)00209-8
[18]   XU Y L, LIU T T, ZHANG W S Buffeting-induced fatigue damage assessment of a long suspension bridge[J]. International Journal of Fatigue, 2009, 31 (3): 575- 586
doi: 10.1016/j.ijfatigue.2008.03.031
[19]   王钦华, 顾明 风速风向联合分布对结构风致疲劳寿命可靠性的影响[J]. 振动与冲击, 2009, 28 (12): 167- 171
WANG Qin-hua, GU Ming Influence of joint distribution of wind speed and wind direction on wind induced fatigue life reliability[J]. Journal of Vibration and Shock, 2009, 28 (12): 167- 171
doi: 10.3969/j.issn.1000-3835.2009.12.040
[20]   张春涛, 李正良, 范文亮, 等 考虑风向风速联合分布的输电塔线体系风振疲劳研究[J]. 工程力学, 2013, 30 (03): 315- 322
ZHANG Chun-tao, LI Zheng-liang, FAN Wen-liang, et al Study on wind-induced fatigue of transmission tower-line coupled system considering the joint distribution of wind speed and wind direction[J]. Engineering Mechanics, 2013, 30 (03): 315- 322
[21]   楼文娟, 段志勇, 庄庆华 极值风速风向的联合概率密度函数[J]. 浙江大学学报:工学版, 2017, 51 (06): 1057- 1063
LOU Wen-juan, DUAN Zhi-yong, ZHUANG Qing-hua Joint probability density function of extreme wind speed and direction[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (06): 1057- 1063
[22]   HUANG M F, HUANG S, FENG H, et al Non-Gaussian time-dependent statistics of wind pressure processes on a roof structure[J]. Wind and Structures, 2016, 23 (4): 275- 300
doi: 10.12989/was.2016.23.4.275
[23]   余世策, 楼文娟, 孙炳楠, 等 开孔大跨屋盖结构的内部风效应研究[J]. 浙江大学学报:工学版, 2005, 39 (08): 1206- 1211
YU Shi-ce, LOU Wen-juan, SUN Bing-nan, et al Internal wind effect for long-span roof structure with openings[J]. Journal of Zhejiang University: Engineering Science, 2005, 39 (08): 1206- 1211
[24]   潘峰, 孙炳楠, 楼文娟 大跨开孔结构屋盖风致响应分析的多模态精细时程积分法[J]. 浙江大学学报:工学版, 2007, 41 (06): 1000- 1006
PAN Feng, SUN Bing-nan, LOU Wen-juan Analysis on wind-induced dynamic response for long-span roof of opening structure by multi-modal precise time-integration method[J]. Journal of Zhejiang University: Engineering Science, 2007, 41 (06): 1000- 1006
[25]   DNV. Fatigue design of offshore steel structures: DNV-PR-C203 [S]. Norway: Det Norske Veritas, 2008: 54-56.
[26]   MINER M Cumulative damage in fatigue[J]. Journal of Applied Mechanics, 1945, 12 (3): 159- 164
[27]   董乐义, 罗俊, 程礼 雨流计数法及其在程序中的具体实现[J]. 计测技术, 2004, 24 (3): 38- 40
DONG Le-yi, LUO Jun, CHENG Li Rain flow count method and its realization in programming[J]. Aviation Metrology and Measurement Technology, 2004, 24 (3): 38- 40
doi: 10.3969/j.issn.1674-5795.2004.03.014
[28]   PETRUCCI G, ZUCCARELLO B Fatigue life prediction under wide band random loading[J]. Fatigue and Fracture of Engineering Materials and Structures, 2004, 27 (12): 1183- 1195
doi: 10.1111/ffe.2004.27.issue-12
[29]   雷宏刚, 裴艳, 刘丽君 高强度螺栓疲劳缺口系数的有限元分析[J]. 工程力学, 2008, (增1): 49- 53
LEI Hong-gang, PEI Yan, LIU Li-jun FEA analysis of fatigue notch coefficients for high-strength bolts[J]. Engineering Mechanics, 2008, (增1): 49- 53
[1] Guo-hui SHEN,Yu-nan BAO,Yong GUO,Gang SONG,Yi-wen WANG. Along-line wind loads and distribution patterns of transmission lines[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1658-1665.
[2] Hao-su LIU,Jun-qing LEI. Identification of three-component coefficients of double deck truss girder for long-span bridge[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1092-1100.
[3] LOU Wen-juan, LIANG Hong-chao, BIAN Rong. Apply member loads to calculate wind load shape coefficient of angle-made-transmission tower[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(9): 1631-1637.
[4] LIU Bo-kai, GAO Hong-li, WU Ying-chuan, ZHANG Xiao-qing, LI Shi-chao. New suspension force measuring system in impulse combustion wind tunnel[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(4): 619-627.
[5] ZHANG Yang, SHEN Guo-hui, YU Shi-ce, MA Yu-cong, ZHANG Rui. Experimental study on aeolian noise generated by transmission lines using wind tunnel testing[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1494-1499.
[6] XU Hai wei, LOU Wen juan, LI Tian hao, LIANG Hong chao, ZHANG Li gang, LU Ming. Wind-induced swing investigation on transmission line jumper wire under hilly terrain[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 264-272.
[7] SHEN Guo hui, YAO Dan, YU Shi ce, LOU Wen juan, XING Yue long, PAN Feng. Wind tunnel test of wind field characteristics on isolated hill and two adjacent hills[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 805-812.
[8] LUO Yao-zhi, SUN Bin. Wind tunnel test and numerical simulation of wind-induced static pressure field around a building[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(7): 1148-1156.
[9] LIN Wei, LOU Wen-juan, SHENTU Tuan-bing, HUANG Ming-feng. Peak factor of non-Gaussian pressure process on complex
super-tall building
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(4): 691-697.
[10] SHEN Guo-hui, WANG Ning-bo, SUN Bing-nan, LOU Wen-juan. Calculation of wind-induced responses and equivalent static wind loads
of high-rise buildings based on wind tunnel tests
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(3): 448-453.
[11] SHEN Guo-hui,YU Guan-peng,SUN Bing-nan,LOU Wen-juan,LI Qing-xiang,YANG Shi-chao. Interference effect of wind-induced response on
large hyperbolic cooling tower
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(1): 33-38.
[12] ZHANG Li-gang, LOU Wen-juan, SHENTU Tuan-bing. Torsional wind load with irregular shape[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(6): 1094-1099.
[13] CHEN Wei-Liang, XU Bo-Hou, HUANG Lei. Vibration analysis of stator winding end baskets of  large turbo-generator[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(8): 1558-1561.
[14] XIAO Bao-lan, YU Xiao-li, HAN Song, LU Guo-dong, XIA Li-feng. The study of effects of fin parameters on thermal hydraulic
performance of a vehicular charged air cooler
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(11): 2164-2168.