Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Civil and Traffic Engineering     
Wind-induced swing investigation on transmission line jumper wire under hilly terrain
XU Hai wei, LOU Wen juan, LI Tian hao, LIANG Hong chao, ZHANG Li gang, LU Ming
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China;
2. State Grid Zhejiang Economic Research Institute, Hangzhou 310000, China;
3. Electric Power Research Institute of State Grid Hunan Electric Power Company, Zhengzhou400052 China
Download:   PDF(1687KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Finite element analysis was applied to a real transmission line and an effective model for estimating a jumper wire swing under wind actions was proposed, in order to investigate wind-induced swing characteristics of jumper wires under hilly terrain and to ensure safe operation of a transmission line. Wind tunnel tests of a typical hill were combined with numerical simulation method to derive three-dimensional fluctuating wind speeds of incoming flow. Using the obtained wind speeds and time history analysis method, wind-induced swing of the jumper wire under hilly terrain was calculated and then compared with results of the terrain category B as defined in the Chinese load code. Results show that conductor motions on both the ends of a jumper wire have significant effects on wind-induced swing of the jumper wire. Under a hilly terrain, horizontal wind speed increases significantly while the turbulence intensity decreases at the hill top where notable vertical wind speeds can also be observed. Compared to hillside, hill top has higher horizontal wind speeds but lower vertical wind speeds. Wind-induced swing of a jumper wire under hilly terrain increases more significantly relative to the terrain category B.



Published: 06 March 2017
CLC:  TM 726  
Cite this article:

XU Hai wei, LOU Wen juan, LI Tian hao, LIANG Hong chao, ZHANG Li gang, LU Ming. Wind-induced swing investigation on transmission line jumper wire under hilly terrain. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(2): 264-272.


微地形下输电线路跳线的风偏分析

为了解微地形条件下跳线风偏的特性以保障输电线路的安全运行,对某条实际输电线路进行有限元分析,提出适用于跳线风偏计算的有效模型.采用微地形下风场的风洞试验结果结合数值方法模拟来流三维脉动风,以此对微地形下的跳线风偏进行时程分析并与我国荷载规范中平坦B类地貌下的结果进行比较.研究结果表明:跳线两端的导线运动对跳线风偏有影响显著.微地形下,水平风速在山顶有明显增加而湍流度则有所减少,且有不可忽略的竖向风速产生.相比山坡,山顶处的水平风速更大而竖向风速偏小.微地形下跳线风偏比平坦B类地貌有显著增加.

[1] 龚坚刚.浙江电网跳线风偏跳闸的分析与措施[J].华东电力,2007, 35(5): 112-113.
GONG Jiangang. Line trips in Zhejiang Power Grid due to windage yaw of jumper wires and relevant countermeasures [J]. East China Electric Power, 2007, 35(5): 112-113.
[2] 田靖,唐雷.“干”字型耐张塔跳线风偏放电分析及防范措施[J].湖北电力,2011, 35(6):2425.
TIAN Jing, TANG Lei. Analysis of discharge between jumper and tension tower with “JG” shape due to wind deviation and preventive measure [J]. Hubei Electric Power, 2011, 35(6): 24-25.
[3] 弓建新,秦润生,贾雷亮,等.220 kV输电线路JG1型塔中相跳线风偏问题的探讨[J].山西电力技术.2001,2: 24-25.
GONG Jianxin, QIN Runsheng, JIA Leiliang, et al. Discussion on wind deflection of mid phrase jumperline JG1 tower on 220 kV power line [J]. Shanxi Electric Power, 2001,2: 24-25.
[4] 严波,林雪松,罗伟,等.绝缘子串风偏角风荷载调整系数的研究[J].工程力学,2010, 27(1): 221-227.
YAN Bo, LIN Xuesong, LUO Wei, et al. Research on dynamic wind load factors for windage yaw angle of suspension insulator strings [J]. Engineering Mechanics, 2010, 27(1): 221-227.
[5] 李黎, 肖林海, 罗先国, 等. 特高压绝缘子串的风偏计算方法[J]. 高电压技术, 2013, 39(12): 2924-2932.
LI Li, XIAO Linhai, LUO Xianguo, et al. Windage yaw calculation method of UHV insulator strings [J]. High Voltage Engineering, 2013, 39(12): 2924-2932.
[6] 楼文娟,杨悦,卢明,等.连续多跨输电线路动态风偏特征及计算模型研究[J].电力建设,2015, 36(2): 18.
LOU Wenjuan, YANG Yue, LU Ming, et al. Conductor swinging dynamic characteristic and calculation method of continuous multispan transmission line [J]. Electric Power Construction, 2015, 36(2): 18.
[7] 孙毅,李正良,黄汉杰,等.山地风场平均及脉动风速特性试验研究[J].空气动力学学报,2011, 29(5):593-599.
SUN Yi, LI Zhengliang, HUANG Hanjie, et al. Experimental research on mean and fluctuating wind velocity in hilly terrain wind field [J]. Acta Aero dynamica Sinica, 2011, 29(5): 593-599.
[8] 姚旦.山丘地形风场特性及对输电塔的风荷载作用研究[D].杭州:浙江大学,2014.
YAO Dan. Research on characteristics of wind field on hilly terrain and its wind load effect on lattice transmission towers [D]. Hangzhou: Zhejiang University,2014.
[9] GB 500092012.建筑结构荷载规范[S].北京:中国建筑工业出版社,2012.
GB 500092012. Load code for the design of building structures [S]. Beijing: China Architecture & Building Press, 2012.
[10] ESDU 85020. Characteristics of atmospheric turbulence near the ground Part II: single point data for strong winds (neutral atmosphere) Engineering Science Data Unit [S], London, 2001.
[11] 罗俊杰,韩大建.大跨度结构三维随机脉动风场的模拟方法[J].振动与冲击,2008, 27(3): 87-91.
LUO Junjie, HAN Dajian. Simulation method for 3D stochastic wind field around longspan structures [J]. Journal of Vibration and Shock, 2008, 27(3):87-91.
[12] 胡亮.基于特征正交分解的桥梁风场随机模拟[D].武汉: 华中科技大学, 2007.
HU Liang. Simulation of stochastic wind fields on longspan bridges based on proper orthogonal decomposition [D]. Wuhan: Huazhong University of Science & Technology, 2007.
[13] KARMAN T V. Progress in the statistical theory of turbulence [J]. Proeedings of the National Academy of Sciences of the United States of America, 1948,34(11): 530-539.
[14] 楼文娟,杨悦,吕中宾,等.考虑气动阻尼效应的输电线路风偏动态分析方法[J].振动与冲击,2015, 34(6):429.
LOU Wenjuang, YANG Yue, LV Zhongbin, et al. Windage yaw dynamic analysis methods for transmission lines considering aerodynamic damping effect [J]. Journal of Vibration and Shock, 2015, 34(6): 24-29.
[15] DAVENPORT A G. Note on the distribution of the largest value of a random function with application to gust loading [J]. Proceedings of the Institution of Civil Engineering, 1964, 28(2): 187-196

[1] LOU Wen-juan, SUN Zhen-mao, XU Fu-you, LI Hong-nan, WANG Xin. Experimental study on aerodynamic characteristics of air flow spoiler[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(1): 93-98.
[2] LV Yi, LOU Wen-Juan, SUN Zhen-Mao, et al. Numerical simulation of aerodynamic characteristics of three bundled iced transmission lines[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(1): 174-179.