|
|
Risk prediction of TBM jamming based on dynamic Bayesian network |
Fang-di XIE( ),Qiang ZHAI,Wei-hong GU*( ) |
School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China |
|
|
Abstract A probability system of jamming was analyzed based on dynamic Bayesian network(BN), in order to predict the risk of tunnel boring machine (TBM) jamming during tunnel mechanical construction. Through expert knowledge and explanation structure model to determine the causal relationship between risk factors and risk events, collecting the measured data of domestic tunnel mechanical engineering geological conditions. The risk indicators were divided according to the relevant specifications, the research results and the cloud division method of cloud model into internal division. The rough set classification principle was applied to discretization of data to obtain the original prior probability of risk factors and the conditional probability of risk events. Combined GENIE software a dynamic BN model was established to predict the risk of card machines. Results show that the risk probability of TBM jamming is 8% under the condition of no evidence. The key risk factors of TBM jamming are rock type, large amount of groundwater and fracture zone. The key cause chain of TBM clamping machine is as follows: rock type → progradation of mud and sand on palm face → clamping knife plate → clamping machine, a large amount of groundwater → progradation of mud and sand on the palm surface → clamping knife plate → clamping machine, high ground stress → large deformation of soft rock → clamping shield → clamping machine, surrounding rock collapse → clamping shield → clamping machine.
|
Received: 20 May 2020
Published: 05 July 2021
|
|
Fund: 国家自然科学基金资助项目(51668037) |
Corresponding Authors:
Wei-hong GU
E-mail: 1220530047@qq.com;lzgwh@163.com
|
基于动态贝叶斯网络的TBM卡机风险预测
为了预测隧道机械施工时隧道掘进机(TBM)卡机风险,基于动态贝叶斯网络(BN)分析卡机概率系统. 通过专家知识以及解释结构模型确定风险因素和风险事件的因果关系,收集国内隧道机械施工地质条件实测数据,根据相关规范、研究成果和云模型云间划分法对风险指标进行区间划分,运用粗糙集分类原理对数据进行离散化,获取风险因素的原始先验概率和风险事件的条件概率. 结合软件GENIE,建立动态BN模型预测卡机风险. 结果表明:在无证据条件下,TBM卡机风险概率为8%;造成TBM卡机的关键风险因素是岩石类型、大量的地下水和断裂破碎带. TBM卡机的关键致因链为岩石类型→掌子面突泥涌沙→卡刀盘→卡机,大量的地下水→掌子面突泥涌沙→卡刀盘→卡机,高地应力→软岩大变形→卡护盾→卡机,围岩坍塌→卡护盾→卡机.
关键词:
隧道掘进机(TBM),
卡机风险预测,
贝叶斯网络(BN),
粗糙集,
云模型
|
|
[1] |
龚秋明. 掘进机隧道掘进概论[M]. 北京: 科学出版社, 2014: 51.
|
|
|
[2] |
SOUSA R L Risk analysis for tunneling project[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2010, 44 (8): 103- 121
|
|
|
[3] |
ABDELGAWAD M, FAYEK A R Fuzzy reliability analyzer: quantitative assessment of risk events in industry using fuzzy fault-tree analysis[J]. Journal of Construction Engineering and Management, 2011, 137 (4): 294- 302
doi: 10.1061/(ASCE)CO.1943-7862.0000285
|
|
|
[4] |
SOUSA R L, EINSTEIN H H Risk analysis during tunnel construction using Bayesian Networks: Porto Metro case study[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2011, 27 (1): 86- 100
|
|
|
[5] |
MOLLON G, DIAS D, SOUBRA A H, et al Extension of CSRSM for the parametric study of the face stability of pressurized tunnels[J]. Geotechnical Special Publication, 2011, 43 (9): 1149- 1156
|
|
|
[6] |
WANG Y, NI X, WANG J, et al A comprehensive investigation on the fire hazards and environmental risks in a commercial complex based on fault tree analysis and the analytic hierarchy process[J]. International Journal of Environmental Research and Public Health, 2020, 17 (19): 7347
doi: 10.3390/ijerph17197347
|
|
|
[7] |
HYUN K C, MIN S, CHOI H, et al Risk analysis using fault-tree analysis (FTA) and analytic hierarchy process (AHP) applicable to shield TBM tunnels[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2015, 49 (6): 121- 129
|
|
|
[8] |
周宗青, 李术才, 李利平, 等 浅埋隧道塌方地质灾害成因及风险控制[J]. 岩土力学, 2013, 34 (5): 1375- 1382 ZHOU Zong-qing, LI Zhu-cai, LI Li-ping, et al Causes of geological hazards and risk control of collapse in shallow tunnels[J]. Rock and Soil Mechanics, 2013, 34 (5): 1375- 1382
|
|
|
[9] |
佘诗刚, 林鹏 中国岩石工程若干进展与挑战[J]. 岩石力学与工程学报, 2014, 33 (3): 433- 457 SHE Shi-gang, LIN Peng Some developments and challenging issues in rock engineering field in china[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33 (3): 433- 457
|
|
|
[10] |
陈发达, 吴贤国, 王彦玉, 等 基于贝叶斯网络的土压盾构刀盘失效故障诊断[J]. 土木工程与管理学报, 2017, 34 (6): 57- 62 CHEN Fa-da, WU Xian-guo, WANG Yan-yu, et al Fault diagnosis of cutterhead failure of earth pressure shield based on Bayesian network[J]. Journal of Civil Engineering and Management, 2017, 34 (6): 57- 62
doi: 10.3969/j.issn.2095-0985.2017.06.010
|
|
|
[11] |
顾伟红, 王恩茂, 张文达 铁路隧道TBM施工风险评估[J]. 安全与环境学报, 2018, 18 (3): 843- 848 GU Wei-hong, WANG En-mao, ZHANG wen-da Risk assessment on the TBM construction of railway tunnels[J]. Journal of Safety and Environment, 2018, 18 (3): 843- 848
|
|
|
[12] |
吕擎峰, 霍振升, 赵本海, 等 基于模糊层次和后果当量法的隧道塌方风险评估[J]. 隧道建设, 2018, 38 (增2): 31- 38 LU Qing-feng, HUO Zhen-sheng, ZHAO Ben-hai, et al Risk assessment of tunnel collapse based on fuzzy hierarchy and consequences equivalent method[J]. Tunnel Construction, 2018, 38 (增2): 31- 38
|
|
|
[13] |
黄震, 傅鹤林, 张加兵, 等 基于模糊−证据理论的盾构隧道施工风险综合评价[J]. 武汉大学学报: 工学版, 2019, 52 (8): 694- 702 HUANG Zhen, FU He-lin, ZHANG Jia-bing, et al Comprehensive evaluation of shield tunnel construction risk based on fuzzy-evidence theory[J]. Engineering Journal of Wuhan University, 2019, 52 (8): 694- 702
|
|
|
[14] |
REN T, JIANG D Y, CHEN J, et al Tunnel surrounding rock classification forecast based on the geological advanced prediction system in seismic area[J]. Applied Mechanics and Materials, 2012, 226-228: 910- 915
doi: 10.4028/www.scientific.net/AMM.226-228.910
|
|
|
[15] |
王效俐, 刘潇, 苏强 邻域粗糙集融合贝叶斯神经网络在医疗决策中的应用研究[J]. 工业工程与管理, 2016, 21 (5): 141- 147 WANG Xiao-li, LIU Xiao, SU Qiang Application in medical decision making based on neighborhood rough set and Bayes neural network[J]. Industrial Engineering and Management, 2016, 21 (5): 141- 147
doi: 10.3969/j.issn.1007-5429.2016.05.022
|
|
|
[16] |
朱敏, 刘卫东 基于粗糙集贝叶斯网络的电子产品设计缺陷评估模型[J]. 计算机应用研究, 2013, 30 (3): 706- 711 ZHU Min, LIU Wei-dong Prediction models of electronic products design defects based on rough set Bayesian network theory[J]. Application Research of Computers, 2013, 30 (3): 706- 711
doi: 10.3969/j.issn.1001-3695.2013.03.016
|
|
|
[17] |
吕启深, 曾辉雄, 姚森敬, 等 基于贝叶斯网络和粗糙集约简的变压器故障诊断[J]. 中国电力, 2013, 46 (9): 75- 79 LU Qi-shen, ZENG Hui-xiong, YAO Sen-jing, et al Transformer fault diagnosis method based on Bayesian network and rough set reduction theory[J]. Electric Power, 2013, 46 (9): 75- 79
doi: 10.3969/j.issn.1004-9649.2013.09.017
|
|
|
[18] |
胡记磊, 唐小微, 裘江南 基于贝叶斯网络的地震液化概率预测分析[J]. 岩土力学, 2016, 37 (6): 1745- 1752 HU Ji-lei, TANG Xiao-wei, QIU Jian-gnan Prediction of probability of seismic-induced liquefaction based on Bayesian network[J]. Rock and Soil Mechanics, 2016, 37 (6): 1745- 1752
|
|
|
[19] |
王晨晖, 袁颖, 周爱红, 等 基于粗糙集优化支持向量机的泥石流危险度预测模型[J]. 科学技术与工程, 2019, 19 (31): 70- 77 WANG Chen-hui, YUAN Ying, ZHOU Ai-hong, et al Prediction model of debris flow danger degree based on support vector machine optimized by rough set[J]. Science Technology and Engineering, 2019, 19 (31): 70- 77
doi: 10.3969/j.issn.1671-1815.2019.31.009
|
|
|
[20] |
王洪利 一种参照模糊集的云模型集合论方法研究[J]. 智能系统学报, 2020, 15 (3): 507- 513 WANG Hong-li A method of cloud model referring to fuzzy sets[J]. GAAI Transacting on Intelligent Systems, 2020, 15 (3): 507- 513
|
|
|
[21] |
李兴生, 李德毅 一种基于云模型的决策表连续属性离散化方方法[J]. 模式识别与人工智能, 2003, 16 (1): 33- 38 LI Xing-sheng, LI De-yi A discretization method for continuous attributes of decision table based on cloud model[J]. Pattern Recognition and Artificial Intelligence, 2003, 16 (1): 33- 38
doi: 10.3969/j.issn.1003-6059.2003.01.007
|
|
|
[22] |
陈馈, 张振川, 李涛. TBM设计与施工[M]. 北京: 人民交通出版社, 2018: 85-101.
|
|
|
[23] |
杜彦良, 杜立杰. 全断面岩石隧道掘进机—系统原理与集成设计[M]. 武汉: 华中科技大学出版社, 2010: 20-21.
|
|
|
[24] |
廖湘平, 龚国芳, 彭雄斌, 等 基于黏性耦合机理的TBM刀盘脱困特性[J]. 浙江大学学报: 工学版, 2016, 50 (5): 902- 912 LIAO Xiang-ping, GONG Guo-fang, PENG Xiong-bin, et al Jam breakout characteristic of tunnel boring machine based on hydro−viscous drive mechanism[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (5): 902- 912
doi: 10.3785/j.issn.1008973X.2016.05.013
|
|
|
[25] |
邓铭江, 谭忠盛 超特长隧洞TBM集群试掘进阶段适应性分析[J]. 隧道建设, 2019, 39 (1): 1- 22 DENG Ming-jiang, TAN Zhong-sheng Analysis of adaptability of TBM in trial boring stage of super-long tunnel[J]. Tunnel Construction, 2019, 39 (1): 1- 22
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|