1. Institute of Structural Engineering, Zhejiang University, Hangzhou 310058, China 2. Zhejiang Electric Power Transmission & Transformation Corporation, Hangzhou 310016, China
Based on the high-frequency force-balance wind tunnel test, the aerodynamic force coefficients of the crane structure were obtained under different wind direction angles and positions of double flat arms. Several finite element models of crane structure with double flat arms were established corresponding to typical working conditions of crane structure during the whole construction process. Wind-induced dynamic response analysis was carried out in time domain and the gust response factors of the crane structure were calculated under various working conditions and different wind directions. The calculated gust response factors were compared with the values derived from the design code of high-rise structures. Results show that the calculated gust response factors based on time history analysis for the body of crane structure exhibit more complicated behavior along the height than ones from the design code. Compared to the time history analysis, the design code overestimates the gust response factors for the top cantilever part of the crane structure, which is above the first guylines. Considering the most critical wind conditions, the gust response factor is calculated as 3.05 under 0 degree wind while the gust response factors of 2.24 (x-direction) and 2.28 (y-direction) are obtained for two orthogonal directions under 45 degree wind.
Fig.1Construction of transmission tower and crane structure with double flat arms
Fig.2Wind tunnel model of crane structure with double flat arms
Fig.3Wind direction angle and position of double flat arms for wind tunnel test
平臂姿态
$\theta $/(°)
0°
0°、15°、30°、45°、60°、75°、90°;
22.5°
22.5°、37.5°、52.5°、67.5°、82.5°、97.5°、112.5°;
45°
45°、60°、75°、90°、105°、120°、135°
Tab.1Wind direction angles for wind tunnel test
Fig.4Aerodynamic force coefficients of standard section of crane structure
$\theta $/(°)
μs
误差/%
风洞试验
文献[18]
0
2.41
2.31
?4.15
45
2.80
2.81
0.36
90
2.16
2.31
6.94
Tab.2Comparisons of aerodynamic force coefficients for standard section of crane structure
平臂姿态
$\theta $/(°)
Cx
误差/%
Cy
误差/%
文献[18]
风洞试验
文献[18]
风洞试验
0°
0
2.23
2.26
?1.33
0
?0.03
0°
45.0
1.71
1.89
?9.52
1.56
1.68
?7.14
0°
90.0
0
0.23
1.90
1.72
10.47
22.5°
22.5
2.07
2.13
?2.82
0.92
1.04
?11.54
22.5°
67.5
0.93
1.02
?8.82
1.83
2.26
?19.03
22.5°
112.5
?0.79
?0.53
49.06
1.76
1.81
2.76
45°
45.0
1.79
1.58
13.29
1.79
1.90
?5.79
45°
90.0
0.11
0.17
?35.29
2.02
2.24
?9.82
45°
135.0
?1.55
?1.14
35.96
1.55
1.41
9.93
Tab.3Comparisons of aerodynamic force coefficients for complete crane structure with double flat arms
Fig.5Typical working conditions of crane structure during tower construction
Fig.6Wind loading positions of crane structure
Fig.7Time histories of wind force at top standard section of crane structure under zero degree wind
Fig.8Time histories of wind force on double flat arms and top part of crane structure under zero degree wind
Fig.9Finite element model of guyed crane structure with double flat arms
Fig.10Natural vibration frequency of four working conditions of guyed crane structure with double flat arms
Fig.11First three vibration formation of fourth working condition of guyed crane structure with double flat arms
Fig.12Time history displacements at key location of crane structure under 45° wind angle
Z/m
β1
β2
0°
45°x向
45°y向
0°
45°x向
45°y向
364.7
1.41
1.36
1.32
1.37
1.01
1.02
370.8
1.51
1.46
1.47
1.21
1.06
1.02
376.9
1.74
1.60
1.60
1.71
1.13
1.14
383
2.20
1.82
1.80
2.02
1.37
1.34
389
2.42
2.03
2.00
2.29
1.61
1.69
396.2
2.62
2.23
2.26
2.62
1.81
1.82
403.4
2.85
2.35
2.36
2.84
2.15
2.01
410.5
2.92
2.46
2.50
2.89
2.18
2.05
417.8
2.99
2.51
2.52
2.92
2.18
2.11
424.8
3.08
2.56
2.60
2.95
2.20
2.21
432.2
3.17
2.62
2.67
3.05
2.24
2.28
Tab.4Comparisons of gust response factors of crane structure for case four
Fig.13Comparisons of gust response factors of crane structure under four working conditions and 0° wind angle
Fig.14Comparisons of gust response factors of crane structure under four working conditions and 45° wind angle
[1]
周焕林, 叶建云, 罗义华 舟山大跨越高塔抱杆现场试验[J]. 电力建设, 2009, 30 (8): 63- 65 ZHOU Huan-lin, YE Jian-yun, Luo Yi-hua Site test of holding poles used in Zhoushan large high crossing tower[J]. Electric Power Construction, 2009, 30 (8): 63- 65
doi: 10.3969/j.issn.1000-7229.2009.08.016
[2]
潘峰, 童建国, 盛晓红, 等 1 000 kV大型薄壁钢管变电构架风致振动响应研究[J]. 工程力学, 2009, 26 (10): 203- 210 PAN Feng, TONG Jian-guo, SHENG Xiao-hong, et al Wind-induced dynamic response of large thin-walled steel tube frame for 1 000 kV substation[J]. Engineering Mechanics, 2009, 26 (10): 203- 210
[3]
马晋, 王子通, 周岱, 等 典型塔式起重机塔架结构风致动力响应与疲劳分析[J]. 上海交通大学学报, 2014, 48 (6): 804- 808 MA Jin, WANG Zi-tong, ZHOU Dai, et al Analysis of Wind-Induced vibration and fatigue effects of a typical tower crane[J]. Journal of Shanghai Jiaotong University, 2014, 48 (6): 804- 808
[4]
高松, 杨文刚, 朱伯文 特高压单柱拉线塔风振系数研究[J]. 建筑结构, 2016, 46 (Suppl. 2): 426- 430 GAO Song, YANG Wen-gang, Zhu Bo-wen Analysis on wind-induced vibration coefficient of UHV single-mast guyed tower[J]. Building Structure, 2016, 46 (Suppl. 2): 426- 430
[5]
邓洪洲, 徐海江, 马星 桅杆结构风振系数研究[J]. 振动与冲击, 2016, 35 (22): 48- 53 DENG Hong-zhou, XU Hai-jiang, MA Xing Wind-vibration coefficient of guyed masts[J]. Journal of Vibration and Shock, 2016, 35 (22): 48- 53
[6]
邓洪洲, 张利, 庞金来 桅杆结构风振系数计算方法研究[J]. 特种结构, 2017, 34 (2): 1- 7 DENG Hong-zhou, ZHANG Li, PANG Jin-lai Study on the calculation method for wind vibration coefficient of guyed masts[J]. Special Structures, 2017, 34 (2): 1- 7
[7]
赵爽, 晏致涛, 李正良, 等 基于风洞试验的苏通大跨越输电塔风振系数研究[J]. 建筑结构学报, 2019, 40 (11): 35- 44 ZHAO Shuang, YAN Zhi-tao, LI Zheng-liang, et al Investigation on wind-induced vibration coefficients of Sutong long span transmission tower based on wind tunnel tests[J]. Journal of Building Structures, 2019, 40 (11): 35- 44
[8]
史国富, 屠海明 一体化通信基站风振响应及风振计算研究[J]. 特种结构, 2020, 37 (2): 108- 112 SHI Guo-fu, TU Hai-ming Calculation and analysis on wind-induced vibration response of integrated communication base station[J]. Special Structures, 2020, 37 (2): 108- 112
[9]
柯世堂, 王晓海, 徐璐. 高三管集束式钢烟囱风致响应与风振系数研究[J/OL]. 建筑结构学报(2020-06-22). https://doi.org/10.14006/j.jzjgxb.2019.0769. KE Shi-tang, WANG Xiao-hui, XU Lu. Study on wind-induced response and wind vibration coefficient of a high three-tube cluster steel chimney [J/OL]. Journal of Building Structures (2020-06-22). https://doi.org/10.14006/j.jzjgxb.2019.0769.
[10]
杨文刚, 王璋奇, 朱伯文, 等 特高压单柱拉线塔塔线体系风振响应时程分析[J]. 中国电机工程学报, 2015, 35 (12): 3182- 3191 YANG Wen-gang, WANG Zhang-qi, ZHU Bo-wen, et al Time history analysis on wind-induced response of UHV guyed single-mast transmission tower-line system[J]. Proceedings of the CSEE, 2015, 35 (12): 3182- 3191
[11]
GANI F G, LÉGERON F L Dynamic response of transmission lines guyed towers under wind loading[J]. Canadian Journal of Civil Engineering, 2010, 37 (3): 450- 465
doi: 10.1139/L09-160
[12]
HAMADA A, DAMATTY A Behavior of guyed transmission line structures under tornado wind loading[J]. Computers and Structures, 2011, 89 (11-12): 986- 1003
doi: 10.1016/j.compstruc.2011.01.015
[13]
HAMADA A, EI DAMATTY A A Failure analysis of guyed transmission lines during F2 tornado event[J]. Engineering Structures, 2015, 85: 11- 25
doi: 10.1016/j.engstruct.2014.11.045
[14]
HAMADA A, KING J P C, EI DAMATTY A A, et al The response of a guyed transmission line system to boundary layer wind[J]. Engineering Structures, 2017, 139: 135- 152
doi: 10.1016/j.engstruct.2017.01.047
[15]
LADUBEC C, DAMATTY A E, ANSARY A E Effect of geometric nonlinear behavior of a guyed transmission tower under downburst loading[J]. Applied Mechanics and Materials, 2012, 226-228: 1240- 1249
doi: 10.4028/www.scientific.net/AMM.226-228.1240
[16]
LORENZO I F, ELENA B C, PM RODRÍGUEZ, et al Dynamic analysis of self-supported tower under hurricane wind conditions[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 197: 104078
doi: 10.1016/j.jweia.2019.104078
[17]
建筑结构荷载规范: GB 50009—2012[S]. 北京: 中国建筑工业出版社, 2012.
[18]
高耸结构设计标准: GB 50135—2019[S]. 北京: 中国计划出版社, 2019.
[19]
HUANG M F, LOU W, YANG L, et al Experimental and computational simulation for wind effects on the Zhoushan transmission towers[J]. Structure and Infrastructure Engineering, 2012, 8 (8): 781- 799
doi: 10.1080/15732479.2010.497540
[20]
肖正直, 李正良, 汪之松, 等 基于HFFB试验的特高压输电塔风振响应分析[J]. 工程力学, 2010, 27 (4): 218- 225 XIAO Zheng-zhi, LI Zheng-liang, WANG Zhi-song, et al Wind-induced vibration analysis of UHV transmission tower based on the HFFB tests[J]. Engineering Mechanics, 2010, 27 (4): 218- 225
[21]
冯鹤, 黄铭枫, 李强, 等 大跨干煤棚网壳风振时程分析和等效静风荷载研究[J]. 振动与冲击, 2016, 35 (1): 164- 172 FENG He, HUANG Ming-feng, LI Qiang, et al Wind-induced vibration time history analysis and equivalent static wind loads for long-span lattice shells[J]. Journal of Vibration and Shock, 2016, 35 (1): 164- 172