Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (9): 1697-1705    DOI: 10.3785/j.issn.1008-973X.2020.09.005
    
Stability analysis of diaphragm wall retained structure in clay
Kai-jun LOU1(),Feng YU1,*(),Tang-dai XIA2,Jian MA3
1. Institute of Foundation and Structure Technologies, Zhejiang Sci-Tech University, Hangzhou 310018, China
2. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
3. Shanghai Geotechnical Investigation, Design and Research Group Zhejiang Branch, Hangzhou 310020, China
Download: HTML     PDF(1054KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

By employing the case history of the main excavation at Wenhualu Station of Hangzhou Metro Line 2, PLAXIS 3D numerical simulation software was applied to determine the value method of soil parameters the soil parameter determination methods involved in hardening soil model with small strain stiffness (HSS model) derived for typical Hangzhou clay. Based on the reliability theory and the evaluation system of stability and economy, three safety modes, including the excavation stabilities against basal heave, overturning, and the lateral deformation control of the retaining structure, were taken as single objectives, respectively. The sensitivity of structural parameters and the optimal solutions under the single objectives were analyzed. The optimal solution of design parameters of diaphragm wall supporting structure was determined by multi-objective optimization algorithm of grey incidence analysis. Results show that HSS model is suitable for the typical clay areas in Hangzhou. As for the internal bracing underground diaphragm wall supporting structure for narrow and long excavation in this area, the wall length is the decisive factor of anti-uplift excavation stability; and the lengths of the wall and the improved soil are equally important to the anti-overturning excavation stability. The passive strengthening zone depth under the bottom soil layer is the main control parameters for excavation deformation. Considering the internal bracing system, the first support is crucial to control the deformation. The optimal solutions of structural design parameters determined by the multi-objective optimization algorithm of grey incidence analysis are close to the actual results.



Key wordshardening soil model with small strain stiffness (HSS model)      diaphragm wall      finite element analysis      grey incidence analysis      multi-objective optimization algorithm     
Received: 19 September 2020      Published: 22 September 2020
CLC:  TU 473  
Corresponding Authors: Feng YU     E-mail: kaijunlou@qq.com;pokfulam@zstu.edu.cn
Cite this article:

Kai-jun LOU,Feng YU,Tang-dai XIA,Jian MA. Stability analysis of diaphragm wall retained structure in clay. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1697-1705.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.09.005     OR     http://www.zjujournals.com/eng/Y2020/V54/I9/1697


黏土中地下连续墙支护结构的稳定性分析

以杭州地铁二号线文华路地铁站主体基坑为工程案例,应用PLAXIS 3D数值模拟软件,确定杭州典型黏土地区土体小应变硬化(HSS)模型的土体参数取值方法. 基于可靠度理论及稳定性和经济性评价体系,将抗隆起稳定、抗倾覆稳定、支护结构侧向位移控制这3种安全性模式分别作为单目标,分析单目标下的结构参数敏感性及其最优解;运用灰色关联度多目标优化算法确定地下连续墙支护结构设计参数的最优解. 结果表明,土体小应变硬化模型适用于杭州典型黏土地区:对于该地区狭长型基坑的内撑式地下连续墙支护结构,墙深是基坑抗隆起稳定性的决定因素,墙深和加固土深度对基坑抗倾覆稳定性的重要性相同,被动区加固土深度在坑底以下较差土层内还是基坑变形的主控参数. 当考虑内支撑时,首道支撑对基坑变形控制起决定性作用;由灰色关联度多目标优化算法确定的结构设计参数最优解与实际结果接近.


关键词: 土体小应变硬化(HSS)模型,  地下连续墙,  有限元分析,  灰色关联分析,  多目标优化算法 
Fig.1 Schematic of calculation case in numerical simulation for excavation
层号 岩土名称 $\gamma $/ (KN·m?3) Es/MPa c/kPa $\varphi $/(°)
1-1 杂填土 18.5 3.0 15.0 8.0
1-2 素填土 18.0 3.0 10.0 12.0
4-1 淤泥质黏土 17.4 1.4 9.5 12.0
6-3 黏土 17.1 4.0 11.0 12.5
7-2 粉质黏土 19.4 10.0 21.0 20.0
10-1 灰色黏土 18.3 7.5 25.0 13.0
12-3 砾砂 19.6 20.0 4.0 32.0
Tab.1 Physical and mechanical properties of soil layers related to Wenhualu Station
试验
参数
黏土 砂土
$E_{{\rm{oed}}}^{{\rm{ref}}}$ $E_{{\rm{50}}}^{{\rm{ref}}}$ $G_{\rm{0}}^{{\rm{ref}}}$ $E_{{\rm{oed}}}^{{\rm{ref}}}$ $E_{{\rm{50}}}^{{\rm{ref}}}$ $G_{\rm{0}}^{{\rm{ref}}}$
初值 $E_{\rm s} $ ${\rm{1}}{\rm{.2}}E_{{\rm{oed}}}^{{\rm{ref}}}$ ${\rm{2}}E_{{\rm{ur}}}^{{\rm{ref}}}$ $E_{\rm s} $ ${\rm{0}}{\rm{.8}}E_{{\rm{oed}}}^{{\rm{ref}}}$ ${\rm{2}}E_{{\rm{ur}}}^{{\rm{ref}}}$
终值 $E_{\rm s} $ ${\rm{1}}{\rm{.32}}E_{{\rm{oed}}}^{{\rm{ref}}}$ ${\rm{2}}{\rm{.5}}E_{{\rm{ur}}}^{{\rm{ref}}}$ $E_{\rm s} $ ${\rm{0}}{\rm{.84}}E_{{\rm{oed}}}^{{\rm{ref}}}$ ${\rm{1}}{\rm{.5}}E_{{\rm{ur}}}^{{\rm{ref}}}$
Tab.2 Comparison between initial and final values in back analysis
Fig.2 Variation in measured and simulated lateral wall displacements at each construction procedure
施工步骤 lm /mm H0m/m ln /mm H0n /m $\Delta $l /% $\Delta $H0 /m
开挖第一层土 14.7 10.5 15.5 9.0 5.4 ?1.5
开挖第二层土 22.1 11.0 25.0 11.5 13.1 0.5
开挖第三层土 37.6 12.5 42.0 15.0 11.7 2.5
开挖第四层土 45.5 13.0 45.0 15.0 ?1.0 2.5
开挖第五层土 50.7 13.0 50.0 16.5 ?1.4 3.5
Tab.3 Analysis and comparison between measured and simulated horizontal displacements of wall
Fig.3 Comparison between measured and simulated urface subsidences results
土体 $\psi /(^\circ)$ $E_{{\rm{oed}}}^{{\rm{ref}}}/{\rm{MPa}}$ $E_{{\rm{50}}}^{{\rm{ref}}}/{\rm{MPa}}$ $E_{{\rm{ur}}}^{{\rm{ref}}}/{\rm{MPa}}$ $G_{\rm{0}}^{{\rm{ref}}}/{\rm{MPa}}$ ${\gamma _{0.7}}/{10^{ - 4}}$ ${\nu _{{\rm{ur}}}}$ $m $ ${R_{\rm{f}}}$
砂土 φ?30 $E_{\rm{s}}^{1 ? 2}$ ${\rm{0}}{\rm{.84}}E_{{\rm{oed}}}^{{\rm{ref}}}$ $5E_{{\rm{oed}}}^{{\rm{ref}}}$ $1.5E_{{\rm{ur}}}^{{\rm{ref}}}$ 2 0.2 0.5 0.9
黏土 0 $E_{\rm{s}}^{1 ? 2}$ ${\rm{1}}{\rm{.32}}E_{{\rm{oed}}}^{{\rm{ref}}}$ ${\rm{8}}E_{{\rm{oed}}}^{{\rm{ref}}}$ $2.5E_{{\rm{ur}}}^{{\rm{ref}}}$ 1 0.2 0.8 0.9
Tab.4 Parameter proportional relation of HSS model for Hangzhou typical clay
Fig.4 Schematic of checking excavation stability against basal heave for excavation
Fig.5 Diagram of parameters combination for stability structure against basal heave
Fig.6 Diagram of lateral displacement parameters combination for retained structure
Fig.7 Variation considering cost in lateral displacement of retained structure with diaphragm wall thickness
模式 敏感性权重
H h3 d
抗隆起 0.910 0.090
抗倾覆 0.500 0.500
支护结构侧移 0.875 0.125
Tab.5 Suggested sensitivity weight indices of diaphragm wall retained structure in typical clay area Hangzhou
[1]   徐中华, 王卫东 敏感环境下基坑数值分析中土体本构模型的选择[J]. 岩土力学, 1810, 31 (1): 258- 264
XU Zhong-hua, WANG Wei-dong Selection of soil constitutive model in foundation excavation numerical analysis under sensitive environment[J]. Rock and Soil Mechanics, 1810, 31 (1): 258- 264
[2]   宋广, 宋二祥 基坑开挖数值模拟中土体本构模型的选取[J]. 工程力学, 2014, 31 (5): 86- 94
SONG Guang, SONG Er-xiang Selection of soil constitutive model in numerical simulation of foundation pit excavation[J]. Engineering Mechanics, 2014, 31 (5): 86- 94
[3]   王卫东, 吴江斌, 黄绍铭 上海地区建筑基坑工程的新进展与特点[J]. 地下空间与工程学报, 2005, 1 (4): 547- 553
WANG Wei-dong, WU Jiang-bin, HUANG Shao-ming New progress and characteristics of excavation construction in Shanghai area[J]. Chinese Journal of Underground Space and Engineering, 2005, 1 (4): 547- 553
[4]   李卓峰, 林伟岸, 朱瑶宏, 等 坑底加固控制地铁基坑开挖引起土体位移的现场测试与分析[J]. 浙江大学学报: 工学版, 2017, 51 (8): 1476- 1508
LI Zhuo-feng, LIN Wei-an, ZHU Yao-hong, et al Field test and analysis of soil displacement caused by underground excavation reinforcement control[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (8): 1476- 1508
[5]   张艳书, 薛栩超, 庄海洋, 等 软土层对地铁狭长深基坑地表沉降的影响研究[J]. 地下空间与工程学报, 2018, 14 (6): 1640- 1651
ZHAO Yan-shu, XUE Xu-chao, ZHUANG Hai-yang Study on the Influence of soft soil on ground settlement of subway narrow and long excavation[J]. Chinese Journal of Underground Space and Engineering, 2018, 14 (6): 1640- 1651
[6]   袁静, 龚晓南 基坑开挖过程中软土性状若干问题的分析[J]. 浙江大学学报: 工学版, 2001, 35 (5): 465- 470
YUAN Jing, GONG Xiao-nan Analysis of soft soil properties during foundation pit excavation[J]. Journal of Zhejiang University: Engineering Science, 2001, 35 (5): 465- 470
[7]   BENZ T. Small strain stiffness of soils and its numerical consequences [D]. Stuttgart: University of Stuttgart, 2006.
[8]   施有志, 阮建凑, 吴昌兴 厦门地区典型地层HS-small模型小应变参数敏感性分析[J]. 科学技术与工程, 2017, 17 (2): 100- 105
SHI You-zhi, RUAN Jian-cou, WU Cang-xing Sensitivity analysis of small strain parameters in HS-small model of typical strata in Xiamen area[J]. Science Technology and Engineering, 2017, 17 (2): 100- 105
doi: 10.3969/j.issn.1671-1815.2017.02.017
[9]   汪中卫. 考虑时间与小应变的地铁深基坑变形及土压力研究[D]. 上海: 同济大学, 2004.
WANG Zhong-wei. Study on deformation and earth pressure of subway deep excavation considering time and small strain [D]. Shanghai: Tongji university, 2004.
[10]   王卫东, 王浩然, 徐中华 基坑开挖数值分析中土体硬化模型参数的试验研究[J]. 岩土力学, 2012, 33 (8): 2283- 2290
WANG Wei-dong, WANG Hao-ran, XU Zhong-hua Experimental study on soil hardening model parameters in numerical analysis of excavation[J]. Rock and Soil Mechanics, 2012, 33 (8): 2283- 2290
doi: 10.3969/j.issn.1000-7598.2012.08.008
[11]   龚晓南 对岩土工程数值分析的几点思考[J]. 岩土力学, 2011, 32 (2): 321- 325
GONG Xiao-nan Some thoughts on numerical analysis of geotechnical engineering[J]. Rock and Soil Mechanics, 2011, 32 (2): 321- 325
doi: 10.3969/j.issn.1000-7598.2011.02.001
[12]   俞建霖, 龙岩, 夏霄, 等 狭长型基坑工程坑底抗隆起稳定性分析[J]. 浙江大学学报: 工学版, 2017, 51 (11): 2165- 2174
YU Jian-lin, LONG Yan, XIA Xiao, et al Analysis on anti-heave stability of narrow and long excavation[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (11): 2165- 2174
[13]   黄宏伟, 龚文平, 庄长贤, 等 重力式挡土墙鲁棒性设计[J]. 同济大学学报, 2014, 42 (3): 377- 385
HUANG Hong-wei, GONG Wen-ping, ZHUANG Chang-xian, et al Robust design of gravity retaining wall[J]. Journal of Tongji University, 2014, 42 (3): 377- 385
[14]   赵密, 张少华, 钟紫蓝, 等 桩下独立基础稳健性设计与分析[J]. 岩土力学, 2019, 40 (11): 1- 9
ZHAO Mi, ZHANG Shao-hua, ZHONG Zi-lan, et al Design and analysis of the robustness of independent foundation under pile[J]. Rock and Soil Mechanics, 2019, 40 (11): 1- 9
[15]   宗露丹, 徐中华, 翁其平, 等 小应变本构模型在超深大基坑分析中的应用[J]. 地下空间与工程学报, 2019, 15 (Suppl. 1): 232- 242
ZONG Lu-dan, XU Zhong-hua, WENG Qi-ping, et al Application of small strain constitutive model in analysis of deep excavation[J]. Chinese Journal of Underground Space and Engineering, 2019, 15 (Suppl. 1): 232- 242
[16]   BOLTONM D The strength and dilatancy of sands[J]. Géotechnique, 1986, 36 (1): 65- 78
doi: 10.1680/geot.1986.36.1.65
[17]   BRINKGREVE R B J, BROERE W. Plaxis material models manual [M]. Delft: Delft University of Technology & PLAXIS B. V., 2006.
[18]   李连祥, 张永磊, 扈学波 基于PLAXIS 3D 有限元软件的某坑中坑开挖影响分析[J]. 地下空间与工程学报, 2016, 12 (Suppl. 1): 254- 266
LI Lian-xiang, ZHANG yong-lei, HU Xue-bo Impact analysis of pit excavation based on PLAXIS 3D finite element software[J]. Chinese Journal of Underground Space and Engineering, 2016, 12 (Suppl. 1): 254- 266
[19]   王浩然. 上海软土地区深基坑变形与环境影响预测方法研究[D]. 上海: 同济大学, 2012.
WANG Hao-ran. Research on prediction method of deep excavation deformation and environmental impact in soft soil area of Shanghai [D]. Shanghai: Tongji University, 2012.
[20]   张雪婵. 软土基坑狭长型深基坑性状分析[D]. 杭州: 浙江大学, 2012.
ZHANG Xue-chan. Characteristics analysis of long and narrow deep excavation with soft soil [D]. Hangzhou: Zhejiang University, 2012.
[21]   浙江省建筑设计研究院. 建筑基坑工程技术规范[S]. 杭州: 浙江工商大学出版社, 2014.
[22]   吴桑 浅析上海地下明挖车站地下连续墙预算指标[J]. 科学技术创新, 2019, 21: 88- 90
WU Sang A brief analysis of the budget index of underground diaphragm wall in Shanghai underground excavation station[J]. Scientific and Technological Innovation, 2019, 21: 88- 90
doi: 10.3969/j.issn.1673-1328.2019.19.049
[1] Xiao-zhu LI,Wei-qing WANG. Bi-level robust game optimal scheduling of regional comprehensive energy system[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 177-188.
[2] Guo-hui SHEN,Yu-nan BAO,Yong GUO,Gang SONG,Yi-wen WANG. Along-line wind loads and distribution patterns of transmission lines[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1658-1665.
[3] Zheng ZHANG,Hao ZHANG,Hao CHAI,Hua-ping WU,Shao-fei JIANG. Design and performance analysis of variable stiffness multi-stable composite laminate structure[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1341-1346.
[4] Yong CHEN,Yong-quan LI,Chong-lei XIE,Kuang-liang QIAN,Ye-sheng ZHANG,Peng-yun CHENG,Xuan-zuo YE. Pushover test study of masonry structure restrained by steel-tube-bundle shear walls[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 499-511.
[5] Li-guo WANG,Xu-dong SHAO,Jun-hui CAO,Yu-bao CHEN,Guang HE,Yang WANG. Performance of steel-ultrathin UHPC composite bridge deck based on ultra-short headed studs[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2027-2037.
[6] Shui-guang TONG,Jia-zhi MIAO,Zhe-ming TONG,Shun HE,Shu-feng XIANG,Xiang-hui SHUAI. Finite element analysis and optimization for static and dynamic characteristics of diesel forklift frame[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1637-1646.
[7] Shao-heng HE,Tang-dai XIA,Lian-xiang LI,Bing-qi YU,Ze-yong LIU. Influence of groundwater seepage on deformation of foundation pits with suspended impervious curtains[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 713-723.
[8] Wen-qiang DAI,Xu ZHENG,Zhi-yong HAO,Yi QIU. Prediction of high-speed train interior noise using energy finite element analysis[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2396-2403.
[9] XIA Yong-qiang, XIAO Nan. Initial rotational stiffness formula of semi-rigid joint with T-stub in beam-to-column connection[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1935-1942.
[10] WANG Xing, XU Wu, ZHANG Xiao-jing, ZHANG Li-na, HU Ben-run. Numerical prediction and experimental verification of fatigue life of TC4 plate strengthened by cold expansion[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1610-1618.
[11] JIANG Nan, CHEN Min-you, XU Sheng-you, LAI Wei, GAO Bing. Thermal fatigue of IGBT module considering crack damage[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 825-833.
[12] TAN Yong, KANG Zhi jun, WEI Bin, DENG Gang. Case study on deep excavation for metro ventilation shaft in Shanghai soft clay[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(6): 1048-1055.
[13] CHEN Wei gang, DENG Hua,BAI Guangbo,DONG Shi lin, ZHU Zhong yi. Load bearing behavior of bearing joint of flat aluminum alloy lattice structures[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 831-840.
[14] HE Zhi ming, ZHANG Xiao jing, LIU Tian qi, YANG Shu xun. Numerical simulation of whole process of cold expansion in 300M steel lug[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(4): 783-791.
[15] BI Yun bo, LI Xia, YAN Wei miao, SHEN Li heng, ZHU Yu, FANG Wei. Pressure force optimization of press foot device for orbital drilling process[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(1): 102-110.