|
|
Stability analysis of diaphragm wall retained structure in clay |
Kai-jun LOU1(),Feng YU1,*(),Tang-dai XIA2,Jian MA3 |
1. Institute of Foundation and Structure Technologies, Zhejiang Sci-Tech University, Hangzhou 310018, China 2. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China 3. Shanghai Geotechnical Investigation, Design and Research Group Zhejiang Branch, Hangzhou 310020, China |
|
|
Abstract By employing the case history of the main excavation at Wenhualu Station of Hangzhou Metro Line 2, PLAXIS 3D numerical simulation software was applied to determine the value method of soil parameters the soil parameter determination methods involved in hardening soil model with small strain stiffness (HSS model) derived for typical Hangzhou clay. Based on the reliability theory and the evaluation system of stability and economy, three safety modes, including the excavation stabilities against basal heave, overturning, and the lateral deformation control of the retaining structure, were taken as single objectives, respectively. The sensitivity of structural parameters and the optimal solutions under the single objectives were analyzed. The optimal solution of design parameters of diaphragm wall supporting structure was determined by multi-objective optimization algorithm of grey incidence analysis. Results show that HSS model is suitable for the typical clay areas in Hangzhou. As for the internal bracing underground diaphragm wall supporting structure for narrow and long excavation in this area, the wall length is the decisive factor of anti-uplift excavation stability; and the lengths of the wall and the improved soil are equally important to the anti-overturning excavation stability. The passive strengthening zone depth under the bottom soil layer is the main control parameters for excavation deformation. Considering the internal bracing system, the first support is crucial to control the deformation. The optimal solutions of structural design parameters determined by the multi-objective optimization algorithm of grey incidence analysis are close to the actual results.
|
Received: 19 September 2020
Published: 22 September 2020
|
|
Corresponding Authors:
Feng YU
E-mail: kaijunlou@qq.com;pokfulam@zstu.edu.cn
|
黏土中地下连续墙支护结构的稳定性分析
以杭州地铁二号线文华路地铁站主体基坑为工程案例,应用PLAXIS 3D数值模拟软件,确定杭州典型黏土地区土体小应变硬化(HSS)模型的土体参数取值方法. 基于可靠度理论及稳定性和经济性评价体系,将抗隆起稳定、抗倾覆稳定、支护结构侧向位移控制这3种安全性模式分别作为单目标,分析单目标下的结构参数敏感性及其最优解;运用灰色关联度多目标优化算法确定地下连续墙支护结构设计参数的最优解. 结果表明,土体小应变硬化模型适用于杭州典型黏土地区:对于该地区狭长型基坑的内撑式地下连续墙支护结构,墙深是基坑抗隆起稳定性的决定因素,墙深和加固土深度对基坑抗倾覆稳定性的重要性相同,被动区加固土深度在坑底以下较差土层内还是基坑变形的主控参数. 当考虑内支撑时,首道支撑对基坑变形控制起决定性作用;由灰色关联度多目标优化算法确定的结构设计参数最优解与实际结果接近.
关键词:
土体小应变硬化(HSS)模型,
地下连续墙,
有限元分析,
灰色关联分析,
多目标优化算法
|
|
[1] |
徐中华, 王卫东 敏感环境下基坑数值分析中土体本构模型的选择[J]. 岩土力学, 1810, 31 (1): 258- 264 XU Zhong-hua, WANG Wei-dong Selection of soil constitutive model in foundation excavation numerical analysis under sensitive environment[J]. Rock and Soil Mechanics, 1810, 31 (1): 258- 264
|
|
|
[2] |
宋广, 宋二祥 基坑开挖数值模拟中土体本构模型的选取[J]. 工程力学, 2014, 31 (5): 86- 94 SONG Guang, SONG Er-xiang Selection of soil constitutive model in numerical simulation of foundation pit excavation[J]. Engineering Mechanics, 2014, 31 (5): 86- 94
|
|
|
[3] |
王卫东, 吴江斌, 黄绍铭 上海地区建筑基坑工程的新进展与特点[J]. 地下空间与工程学报, 2005, 1 (4): 547- 553 WANG Wei-dong, WU Jiang-bin, HUANG Shao-ming New progress and characteristics of excavation construction in Shanghai area[J]. Chinese Journal of Underground Space and Engineering, 2005, 1 (4): 547- 553
|
|
|
[4] |
李卓峰, 林伟岸, 朱瑶宏, 等 坑底加固控制地铁基坑开挖引起土体位移的现场测试与分析[J]. 浙江大学学报: 工学版, 2017, 51 (8): 1476- 1508 LI Zhuo-feng, LIN Wei-an, ZHU Yao-hong, et al Field test and analysis of soil displacement caused by underground excavation reinforcement control[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (8): 1476- 1508
|
|
|
[5] |
张艳书, 薛栩超, 庄海洋, 等 软土层对地铁狭长深基坑地表沉降的影响研究[J]. 地下空间与工程学报, 2018, 14 (6): 1640- 1651 ZHAO Yan-shu, XUE Xu-chao, ZHUANG Hai-yang Study on the Influence of soft soil on ground settlement of subway narrow and long excavation[J]. Chinese Journal of Underground Space and Engineering, 2018, 14 (6): 1640- 1651
|
|
|
[6] |
袁静, 龚晓南 基坑开挖过程中软土性状若干问题的分析[J]. 浙江大学学报: 工学版, 2001, 35 (5): 465- 470 YUAN Jing, GONG Xiao-nan Analysis of soft soil properties during foundation pit excavation[J]. Journal of Zhejiang University: Engineering Science, 2001, 35 (5): 465- 470
|
|
|
[7] |
BENZ T. Small strain stiffness of soils and its numerical consequences [D]. Stuttgart: University of Stuttgart, 2006.
|
|
|
[8] |
施有志, 阮建凑, 吴昌兴 厦门地区典型地层HS-small模型小应变参数敏感性分析[J]. 科学技术与工程, 2017, 17 (2): 100- 105 SHI You-zhi, RUAN Jian-cou, WU Cang-xing Sensitivity analysis of small strain parameters in HS-small model of typical strata in Xiamen area[J]. Science Technology and Engineering, 2017, 17 (2): 100- 105
doi: 10.3969/j.issn.1671-1815.2017.02.017
|
|
|
[9] |
汪中卫. 考虑时间与小应变的地铁深基坑变形及土压力研究[D]. 上海: 同济大学, 2004. WANG Zhong-wei. Study on deformation and earth pressure of subway deep excavation considering time and small strain [D]. Shanghai: Tongji university, 2004.
|
|
|
[10] |
王卫东, 王浩然, 徐中华 基坑开挖数值分析中土体硬化模型参数的试验研究[J]. 岩土力学, 2012, 33 (8): 2283- 2290 WANG Wei-dong, WANG Hao-ran, XU Zhong-hua Experimental study on soil hardening model parameters in numerical analysis of excavation[J]. Rock and Soil Mechanics, 2012, 33 (8): 2283- 2290
doi: 10.3969/j.issn.1000-7598.2012.08.008
|
|
|
[11] |
龚晓南 对岩土工程数值分析的几点思考[J]. 岩土力学, 2011, 32 (2): 321- 325 GONG Xiao-nan Some thoughts on numerical analysis of geotechnical engineering[J]. Rock and Soil Mechanics, 2011, 32 (2): 321- 325
doi: 10.3969/j.issn.1000-7598.2011.02.001
|
|
|
[12] |
俞建霖, 龙岩, 夏霄, 等 狭长型基坑工程坑底抗隆起稳定性分析[J]. 浙江大学学报: 工学版, 2017, 51 (11): 2165- 2174 YU Jian-lin, LONG Yan, XIA Xiao, et al Analysis on anti-heave stability of narrow and long excavation[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (11): 2165- 2174
|
|
|
[13] |
黄宏伟, 龚文平, 庄长贤, 等 重力式挡土墙鲁棒性设计[J]. 同济大学学报, 2014, 42 (3): 377- 385 HUANG Hong-wei, GONG Wen-ping, ZHUANG Chang-xian, et al Robust design of gravity retaining wall[J]. Journal of Tongji University, 2014, 42 (3): 377- 385
|
|
|
[14] |
赵密, 张少华, 钟紫蓝, 等 桩下独立基础稳健性设计与分析[J]. 岩土力学, 2019, 40 (11): 1- 9 ZHAO Mi, ZHANG Shao-hua, ZHONG Zi-lan, et al Design and analysis of the robustness of independent foundation under pile[J]. Rock and Soil Mechanics, 2019, 40 (11): 1- 9
|
|
|
[15] |
宗露丹, 徐中华, 翁其平, 等 小应变本构模型在超深大基坑分析中的应用[J]. 地下空间与工程学报, 2019, 15 (Suppl. 1): 232- 242 ZONG Lu-dan, XU Zhong-hua, WENG Qi-ping, et al Application of small strain constitutive model in analysis of deep excavation[J]. Chinese Journal of Underground Space and Engineering, 2019, 15 (Suppl. 1): 232- 242
|
|
|
[16] |
BOLTONM D The strength and dilatancy of sands[J]. Géotechnique, 1986, 36 (1): 65- 78
doi: 10.1680/geot.1986.36.1.65
|
|
|
[17] |
BRINKGREVE R B J, BROERE W. Plaxis material models manual [M]. Delft: Delft University of Technology & PLAXIS B. V., 2006.
|
|
|
[18] |
李连祥, 张永磊, 扈学波 基于PLAXIS 3D 有限元软件的某坑中坑开挖影响分析[J]. 地下空间与工程学报, 2016, 12 (Suppl. 1): 254- 266 LI Lian-xiang, ZHANG yong-lei, HU Xue-bo Impact analysis of pit excavation based on PLAXIS 3D finite element software[J]. Chinese Journal of Underground Space and Engineering, 2016, 12 (Suppl. 1): 254- 266
|
|
|
[19] |
王浩然. 上海软土地区深基坑变形与环境影响预测方法研究[D]. 上海: 同济大学, 2012. WANG Hao-ran. Research on prediction method of deep excavation deformation and environmental impact in soft soil area of Shanghai [D]. Shanghai: Tongji University, 2012.
|
|
|
[20] |
张雪婵. 软土基坑狭长型深基坑性状分析[D]. 杭州: 浙江大学, 2012. ZHANG Xue-chan. Characteristics analysis of long and narrow deep excavation with soft soil [D]. Hangzhou: Zhejiang University, 2012.
|
|
|
[21] |
浙江省建筑设计研究院. 建筑基坑工程技术规范[S]. 杭州: 浙江工商大学出版社, 2014.
|
|
|
[22] |
吴桑 浅析上海地下明挖车站地下连续墙预算指标[J]. 科学技术创新, 2019, 21: 88- 90 WU Sang A brief analysis of the budget index of underground diaphragm wall in Shanghai underground excavation station[J]. Scientific and Technological Innovation, 2019, 21: 88- 90
doi: 10.3969/j.issn.1673-1328.2019.19.049
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|