Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (9): 1637-1646    DOI: 10.3785/j.issn.1008-973X.2019.09.001
Mechanical Engineering     
Finite element analysis and optimization for static and dynamic characteristics of diesel forklift frame
Shui-guang TONG1(),Jia-zhi MIAO1,Zhe-ming TONG1,*(),Shun HE1,Shu-feng XIANG2,Xiang-hui SHUAI2
1. College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
2. Hang Fork Group Co. Ltd, Hangzhou 311305, China
Download: HTML     PDF(2033KB) HTML
Export: BibTeX | EndNote (RIS)      


To verify the reliability of the 3-ton diesel forklift frame developed by a high-tech enterprise and to further improve its comprehensive performance, static and dynamic characteristics of the frame were analyzed by finite element method. The situation of forced frame under the critical condition was calculated. The preceding six-order natural frequencies and shapes were obtained by modal analysis. The harmonic response of the frame was analyzed based on the results of modal analysis. Finally, the high damping M2052 alloy gasket was used to optimize the vibration performance of the frame. Results show that the maximum stress of the frame was 141.75 MPa under the critical condition, which was lower than the allowable stress of the frame material. Therefore, the frame has high safety performance. The front-end plate of the frame has a large amplitude near the first order natural frequency. The frame amplitude peak decreased up to 20% by using the high damping M2052 alloy gasket, and its vibration performance is improved obviously.

Key wordsforklift frame      static and dynamic characteristics      finite element analysis (FEA)      high damping M2052 alloy gasket      aseismic performance     
Received: 12 July 2018      Published: 12 September 2019
CLC:  TH 242  
Corresponding Authors: Zhe-ming TONG     E-mail:;
Cite this article:

Shui-guang TONG,Jia-zhi MIAO,Zhe-ming TONG,Shun HE,Shu-feng XIANG,Xiang-hui SHUAI. Finite element analysis and optimization for static and dynamic characteristics of diesel forklift frame. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1637-1646.

URL:     OR


为校验某高新企业研发的3 t内燃叉车车架可靠性并进一步改善其综合性能,采用有限元法分析其静动特性.计算车架在临界工况下的受力情况;进行模态分析,得到前6阶固有频率和振型;以模态分析结果为基础对车架进行谐响应分析;利用M2052高阻尼合金垫片对车架振动性能进行优化. 结果表明:车架在临界工况下的最大应力达到141.75 MPa,低于车架材料的许用应力,具有较高安全性;车架前端板在一阶固有频率附近的振幅较大,改用M2052高阻尼合金垫片使其振幅峰值最大下降了20%,振动性能得到了明显改善.

关键词: 叉车车架,  动静特性,  有限元分析,  M2052高阻尼合金垫片,  减震性能 
Fig.1 Diagram of forklift truck frame model before and after simplification
Fig.2 Optimization flow chart of mesh division scheme
选项 设置 选项 设置
尺寸函数 曲率 跨度中心角 中等
相关性中心 细化 最大面尺寸 15.0 mm
平滑度 ? ?
Tab.1 Global mesh division scheme of forklift frame
Fig.3 Mesh division scheme for local structure of forklift frame
Fig.4 Mesh division results of forklift frame
序号 受力来源 m/kg 加载力的类型
A 配重 1 802 集中力
B 发动机 260 远程载荷
C 变速箱 200 远程载荷
D 护顶架 74 远程载荷
E 仪表架 21 集中力
F 机罩 24 远程载荷
G 驾驶员 75 远程载荷
H、I、J、K 倾斜液压缸 ? 集中力
L 车架本身 ? 重力加速度
Tab.2 Working condition of forklift frame
Fig.5 Loads and constraints on forklift frame
Fig.6 Force diagram for forklift mask
Fig.7 Equivalent stress cloud map of forklift frame
Fig.8 Structural error cloud map of forklift frame
Fig.9 Total deformation cloud map of forklift frame
Fig.10 Vibration mode diagram for first six orders of forklift frame
阶数 f /Hz 振型描述
1 29.14 z 轴摆动
2 99.68 y 轴摆动弯曲
3 102.45 局部弯曲和翘曲
4 103.87 局部弯曲
5 112.90 两侧绕 Y 轴弯曲
6 127.61 局部弯曲变形
Tab.3 Natural frequencies and vibration mode description for first six orders of forklift frame
发动机类型 直列3缸 直列4缸 直列6缸
惯性力 一阶 平衡 平衡 平衡
二阶 平衡 不平衡 平衡
惯性力矩 一阶 不平衡 平衡 平衡
二阶 不平衡 平衡 平衡
Tab.5 Inherent balance characteristics of several common engines
参数 数值 单位
缸径×冲程 98×105 mm×mm
活塞排量 3.17 L
气缸数 4 ?
冲程数 4 ?
点火顺序 1-3-4-2 ?
最大扭矩转速 1 000~2 000 r/min
额定转速 2 500 r/min
低怠速转速 700~750 r/min
Tab.4 Main technical parameters of 4D32XG30 Xinchai engine
Fig.11 Balance analysis of reciprocating inertia force of in-line four-cylinder engine
Fig.12 Force transmission in crank and connecting rod mechanism
Fig.13 Time-dependent change of engine overturning moment
Fig.14 Loading position of overturning moment of forklift frame
Fig.15 Acceleration response of frame’s front-end plate when forklift starting at idle condition
Fig.16 Material of frame’s front-end plate and gasket
材料 ρ/(kg·m?3) E/GPa σb/MPa σs/MPa δ/% c
M2052 7.31×103 58±2 638±3 337±6 34±2 0.2
Tab.6 Mechanical property parameters of M2052 alloy
Fig.17 Acceleration response of frame’s front-end plate after gasket material being changed
[1]   李甲. 某型3吨叉车结构有限元分析及减振研究[D]. 山西: 太原科技大学, 2011: 1.
LI Jia. Structure finite element analysis and damping research of a 3 ton forklift [D]. Shanxi: Taiyuan University of Science and Technology, 2011: 1.
[2]   WANG L W, WANG Q, ZHANG W Optimization design of towbarless aircraft tractor frame based on ANSYS Workbench[J]. Applied Mechanics and Materials, 2013, 268-270: 921- 925
[3]   中国工程机械工业协会工业车辆分会. 2017年国内外机动工业车辆统计数据[EB/OL].(2018-02-06)[2018-05-20].
[4]   许畅. 叉车主体结构模态分析与减振设计[D]. 杭州: 中国计量大学, 2012: 16.
XV Chang. Modal analysis and vibration reduction of the main structure on a forklift [D]. Hangzhou: China Jiliang University, 2012: 16.
[5]   FRIES T P, BELYTSCHKO T The extended/generalized finite element method: an overview of the method and its applications[J]. International Journal for Numerical Methods in Engineering, 2010, 84 (3): 253- 304
[6]   BULMAN S, SIENZ J, HINTON E Comparisons between algorithms for structural topology optimization using a series of benchmark studies[J]. Computers and Structures, 2001, 79 (12): 1203- 1218
doi: 10.1016/S0045-7949(01)00012-8
[7]   CHEN J, YANG Z L, Li X X Dynamic characteristics analysis and topology optimization of column based on finite element method[J]. Advanced Materials Research, 2013, 721 (1): 541- 544
[8]   桂良进, 周长路, 范子杰 某型载货车车架结构轻量化设计[J]. 汽车工程, 2003, 25 (4): 403- 406
GUI Liang-jin, ZHOU Chang-lu, FAN Zi-jie Lightweight design for frame structure of a heavy-duty truck[J]. Automotive Engineering, 2003, 25 (4): 403- 406
doi: 10.3321/j.issn:1000-680X.2003.04.023
[9]   于佳伟, 郑松林, 冯金芝, 等 某轿车前副车架服役载荷模拟试验加速方法研究[J]. 机械工程学报, 2016, 52 (22): 112- 120
YU Jia-wei, ZHENG Song-lin, FENG Jin-zhi, et al Research on accelerated testing method for the service-simulation fatigue test of automotive front sub-frame[J]. Journal of Mechanical Engineering, 2016, 52 (22): 112- 120
[10]   TONG Z, LI Y, DANE W, et al Exploring the effects of ventilation practices in mitigating in-vehicle exposure to traffic-related air pollutants in China[J]. Environment International, 2019, 127: 773- 784
doi: 10.1016/j.envint.2019.03.023
[11]   LUO Z K, HE P, TAN W, et al Dynamic analysis of a truck frame with fuzzy uncertain parameters[J]. Advanced Materials Research, 2012, 466-467: 1279- 1284
doi: 10.4028/
[12]   CHENG Z, S TONG, Z TONG Bi-directional nozzle control of multistage radial-inflow turbine for optimal part-load operation of compressed air energy storage[J]. Energy Conversion and Management, 2019, 181 (1): 485- 500
[13]   童水光, 贾亚萍, 余跃, 等 动点间歇性冲击变形计算方法的研究[J]. 浙江大学学报:工学版, 2017, 51 (1): 124- 130
TONG Shui-guang, JIA Ya-ping, YU Yue, et al Calculation method for deformation of inconsecutive impacts on change-points[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (1): 124- 130
[14]   范文杰, 范子杰, 桂良进, 等 多工况下客车车架结构多刚度拓扑优化设计研究[J]. 汽车工程, 2008, 30 (6): 531- 533
FAN Wen-jie, FAN Zi-jie, GUI Liang-jin, et al Multi-stiffness topology optimization of bus frame with multiple loading conditions[J]. Automotive Engineering, 2008, 30 (6): 531- 533
doi: 10.3321/j.issn:1000-680X.2008.06.016
[15]   卫良保, 曾龙修 叉车车架有限元模态分析与结构改进[J]. 工程机械, 2012, 43 (3): 47- 50
WEI Liang-bao, ZENG Long-Xiu Finite element modal analysis and structure improvement of forklift truck frame[J]. Construction Machinery and Equipment, 2012, 43 (3): 47- 50
doi: 10.3969/j.issn.1000-1212.2012.03.012
[16]   郭建华 基于ANSYS Workbench的汽车车架静力学分析[J]. 长春师范大学学报, 2017, 36 (6): 20- 22
GUO Jian-hua Static analysis of vehicle frame based on ANSYS Workbench[J]. Journal of Changchun Normal University, 2017, 36 (6): 20- 22
[17]   TONG S G, CHENG Z W, CONG F Y, et al. Developing a grid-connected power optimization strategy for the integration of wind power with low-temperature adiabatic compressed air energy storage[J]. Renewable Energy, 2018, 125: 73- 86
doi: 10.1016/j.renene.2018.02.067
[18]   HE Q H, ZHANG D Q, ZHAO Y M, et al Control strategy for energy recovery system in hybrid forklift[J]. Journal of Central South University, 2014, 21 (8): 3119- 3125
doi: 10.1007/s11771-014-2283-y
[19]   TONG Z, CHEN Y, MALKAWI A Defining the influence region in neighborhood-scale CFD simulations for natural ventilation design[J]. Applied Energy, 2016, 182: 625- 633
doi: 10.1016/j.apenergy.2016.08.098
[20]   KRAMáROVá M, ?UBOSLAV DULINA, ?ECHOVá I Forklift workers strain of spine at industrial logistics in depending on human work posture[J]. Procedia Engineering, 2017, 192: 486- 491
doi: 10.1016/j.proeng.2017.06.084
[21]   邹志华. 30-A叉车结构优化与减振的应用研究[D]. 湖北: 华中科技大学, 2015: 15.
ZOU Zhi-hua. Application research on Structure optimization and vibration reduction of the forklift 30-A[D]. Hubei: Huazhong University of Science and Technology, 2015: 15.
[22]   戚海勇. 某型号内燃叉车车架振动分析及优化[D]. 杭州: 浙江大学, 2017: 5.
QI Hai-yong. Analysis and optimization of a type of internal-combustion forklift frame vibration[D]. Hangzhou: Zhejiang University, 2017: 5.
[23]   童水光, 何顺, 童哲铭, 等 叉车门架动静态联合仿真及多目标优化[J]. 机械设计, 2018, 35 (12): 11- 15
TONG Shui-guang, HE Shun, TONG Zhe-ming, et al Dynamic and co-simulation of forklift frame and multi-objective optimization[J]. Journal of Machine Design, 2018, 35 (12): 11- 15
[24]   郝庆军. 多缸发动机振动激励下的油罐车车架动态特性研究[D]. 武汉: 武汉理工大学, 2010: 36.
HAO Qing-jun. Research on the dynamic characteristics of tanker frame under multi-cylinder engine vibration [D]. Wuhan: Wuhan University of Technology, 2010: 36.
[25]   TONG Z M, CHENG Z W, TONG S G Preliminary design of multistage radial turbines based on rotor loss characteristics under variable operating conditions[J]. Energies, 2019, 12 (13): 2550
doi: 10.3390/en12132550
[26]   刘圣华, 周龙保. 内燃机学[M]. 北京: 机械工业出版社, 2017: 214-226.
[27]   卢凤双, 芮永岭, 田宇鹏, 等 M2052高阻尼合金的研究及应用[J]. 金属功能材料, 2013, 20 (4): 43- 48
LU Feng-shuang, RUI Yong-ling, TIAN Yu-peng, et al Research and application of M2052 high damping alloys[J]. Metallic Functional Materials, 2013, 20 (4): 43- 48
[1] Ying-long CHEN,Di YAN,Zeng-meng ZHANG,Da-yong NING,Yong-jun GONG. Static and dynamic characteristics of soft unit based on hydraulic straight drive[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1602-1609.
[2] XIA Yong-qiang, XIAO Nan. Initial rotational stiffness formula of semi-rigid joint with T-stub in beam-to-column connection[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1935-1942.
[3] JIANG Nan, CHEN Min-you, XU Sheng-you, LAI Wei, GAO Bing. Thermal fatigue of IGBT module considering crack damage[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 825-833.
[4] DAI Gong-lian, ZHENG Peng-fei, YAN Bin, XIAO Xiang-nan. Longitudinal force of CWR on box girder under solar radiation[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(4): 609-614.
[5] LIN Chao, TAO You-tao, CHENG Kai, YU Song-song, LIU Lei. Displacement coupling analysis of micro/nano transmission platform[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(4): 720-727.
[6] TANG Liang-qin, LIU Dong-yan, NIE De-xin. Strength parameter selection of weak intercalated layer in
Xiangjiaba bed foundation
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(1): 162-168.
[7] HUANG Meng-Xing, XIE Yun-Yue, FAN Cheng-Zhi. Operating characteristic analysis and application study of
compound permanent magnet synchronous machines
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(5): 1019-1024.
[8] GUO Lei, HAO Zhi-Yong, LIU Bo, et al. Multi-body dynamics and finite element method co-simulation for crankshaft dynamical strength analysis[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(09): 1638-1643.
[9] CHEN Zhi-Beng, TU Chu-Lin, BAI Sheng-Hu, et al. Numerical simulation on buckling of combined multilayered unequal-thickness cylindrical shell[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(09): 1679-1683.