|
|
Experimental study on characteristics of alkaline hydroxide to eliminate NH4Cl ash deposition |
Yu-guo NI( ),Hao ZHOU*( ),Shi-hao HU |
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract By simulating the atmosphere of NH4Cl in coal-fired power plants, the rules that how NH4Cl caused ash deposition to affect the heat flux density of the heat-transfer surfaces were studied. A drop tube furnace system was used to simulate the boiler tail flue, an oil circulation system for temperature control, a probe system for ash deposition, the temperature inside and outside of the probe was monitored in real time to obtain the heat flux density on the probe surface. NaOH, Mg(OH)2, and Ca(OH)2 were used as additives to study the removing effect of three alkaline hydroxides on NH4Cl in the flue gas. Results showed that NH4Cl had a weak adhesion ability to ash, and the decrease in heat flux density on the heat-transfer surface was mainly caused by the deposition of NH4Cl. Among the three additives, Ca(OH)2 could narrow the decrease of heat flux density on the top of the probe, reducing the ratio of the decrease to 3.61%, while NaOH could narrow the decrease of the heat flux density at the bottom of the probe, reducing the ratio of the decrease to 6.46%. Although Mg(OH)2 could reduce the decrease of the heat flux density at the top of the probe, it would enlarge the decrease of the heat flux density at the bottom of the probe.
|
Received: 21 May 2020
Published: 05 July 2021
|
|
Fund: 国家重点研发计划资助项目(2018YFB0604104) |
Corresponding Authors:
Hao ZHOU
E-mail: yg-ni@163.com;zhouhao@zju.edu.cn
|
碱性氢氧化物消除NH4Cl积灰特性实验研究
通过模拟燃煤电厂中NH4Cl氛围,研究NH4Cl如何影响飞灰沉积引起受热面热流密度变化. 实验采用竖式炉系统模拟锅炉尾部烟道,油循环系统控制温度,探针收集积灰,实时监测探针内外表面温度,获得探针受热面热流密度,将NaOH,Mg(OH)2,Ca(OH)2作为脱除剂,研究3种碱性氢氧化物对烟气中NH4Cl的脱除效果. 研究发现,NH4Cl对灰分的黏附能力较弱,受热面热流密度降低主要由NH4Cl析出形成的沉积层引起. 在3种脱除剂中,Ca(OH)2能够改善探针顶部热流密度降低,将热流密度降低率缩小到3.61%;NaOH能够改善探针底部热流密度降低,将降低率缩小到6.46%;Mg(OH)2虽然能够减少探针顶部热流密度降低,但会引起探针底部热流密度降低加剧.
关键词:
热流密度,
灰沉积,
NH4Cl,
脱除剂,
碱性氢氧化物
|
|
[1] |
MUZIO L, BOGSETH S, HIMES R, et al Ammonium bisulfate formation and reduced load SCR operation[J]. Fuel, 2017, 206: 180- 189
doi: 10.1016/j.fuel.2017.05.081
|
|
|
[2] |
ZHOU C Y, ZHANG L N, DENG Y, et al Research progress on ammonium bisulfate formation and control in the process of selective catalytic reduction[J]. Environmental Progress and Sustainable Energy, 2016, 35 (6): 1664- 1672
doi: 10.1002/ep.12409
|
|
|
[3] |
MENASHA J, DUNN-RANKIN D, MUZIO L, et al Ammonium bisulfate formation temperature in a bench-scale single-channel air preheater[J]. Fuel, 2011, 90: 2445- 2453
doi: 10.1016/j.fuel.2011.03.006
|
|
|
[4] |
CHEN H, PAN P Y, WANG Y G, et al Field study on the corrosion and ash deposition of low-temperature heating surface in a large-scale coal-fired power plant[J]. Fuel, 2017, 208: 149- 159
doi: 10.1016/j.fuel.2017.06.120
|
|
|
[5] |
ZHOU H, ZHANG J K, ZHANG K Investigation of the deposition characteristics of ammonium bisulfate and fly ash blend using an on-line digital image technique: effect of deposition surface temperature[J]. Fuel Processing Technology, 2018, 179: 359- 368
doi: 10.1016/j.fuproc.2018.07.030
|
|
|
[6] |
CHEN H, PAN P Y, SHAO H S, et al Corrosion and viscous ash deposition of a rotary air preheater in a coal-fired power plant[J]. Applied Thermal Engineering, 2017, 113: 373- 385
doi: 10.1016/j.applthermaleng.2016.10.160
|
|
|
[7] |
ZHANG J K, ZHOU H, BAI ZX, et al Experimental investigation of the effect of two additives on the characteristics of low-temperature fouling with an in-situ measurement technique[J]. Applied Thermal Engineering, 2020, 164: 114445
doi: 10.1016/j.applthermaleng.2019.114445
|
|
|
[8] |
GE H J, SHEN L H, SONG T, et al Study on the migration characteristics of sodium and chlorine in chemical looping process of Zhundong coal with hematite oxygen carrier[J]. Energy and Fuels, 2019, 33: 1489- 1500
doi: 10.1021/acs.energyfuels.8b02774
|
|
|
[9] |
LEE B H, LOPEZ-HILFIKER F D, SCHRODER J C, et al Airborne observations of reactive inorganic chlorine and bromine species in the exhaust of coal-fired power plants[J]. Journal of Geophysical Research: Atmospheres, 2018, 123 (19): 11225- 11237
|
|
|
[10] |
蒋旭光, 李香排, 李琦, 等 氯化物排放与燃烧脱氯技术工业性试验研究[J]. 热力发电, 2004, 33 (3): 37- 39, 49 JIANG Xu-guang, LI Xiang-pai, LI Qi, et al Industrial experiment study on chlorid emission and dichlorination technology[J]. Thermal Power Generation, 2004, 33 (3): 37- 39, 49
doi: 10.3969/j.issn.1002-3364.2004.03.012
|
|
|
[11] |
刘正宁, 谭厚章, 牛艳青, 等 土壤中NH4Cl对生物质锅炉结渣的影响 [J]. 中国电机工程学报, 2010, 30 (26): 82- 85 LIU Zheng-ning, TAN Hou-zhang, NIU Yan-qing, et al Analysis of effect of NH4Cl in soil on the slagging in biomass boiler [J]. Proceedings of the Chinese Society of Electrical Engineering, 2010, 30 (26): 82- 85
|
|
|
[12] |
TAO F M Direct formation of solid ammonium chloride particles from HCl and NH3 vapors [J]. The Journal of Chemical Physics, 1999, 110 (23): 11121
doi: 10.1063/1.479054
|
|
|
[13] |
HWANG I H, MINOYA H, MATSUTO T, et al Removal of ammonium chloride generated by ammonia slip from the SNCR process in municipal solid waste incinerators[J]. Chemosphere, 2009, 74 (10): 1379- 1384
doi: 10.1016/j.chemosphere.2008.11.008
|
|
|
[14] |
董锐锋, 吴文龙, 王锋涛, 等 燃煤电厂超低排放改造后烟道氯化铵结晶原因分析及对策[J]. 热力发电, 2018, 47 (3): 128- 134 DONG Rui-feng, WU Wen-long, WANG Feng-tao, et al Reason analysis and countermeasures of ammonium chloride crystallization in the flue system of coal-fired power plants after ultra-low emission transformation[J]. Thermal Power Generation, 2018, 47 (3): 128- 134
|
|
|
[15] |
ZHU M, OU G F, JIN H Z, et al Top of the REAC tube corrosion induced by under deposit corrosion of ammonium chloride and erosion corrosion[J]. Engineering Failure Analysis, 2015, 57: 483- 489
doi: 10.1016/j.engfailanal.2015.08.022
|
|
|
[16] |
QU Q, LI L, BAI W, et al Effects of NaCl and NH4Cl on the initial atmospheric corrosion of zinc [J]. Corrosion Science, 2005, 47 (11): 2832- 2840
doi: 10.1016/j.corsci.2004.11.010
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|