Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Experimental study on residual ozone decomposition in process of multi-pollutants removal by ozone
LIN Fa-wei, ZHU Yan-qun, XU Chao-qun, MA Qiang, WANG Zhi-hua, ZHOU Jun-hu, CEN Ke-fa
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Download:   PDF(670KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The observation of residual ozone decomposition with the purpose of near-zero gas emission was conducted during the process of simultaneous multi-pollutants removal by ozone. A 300 MW boiler flue gas conditions were simulated. The effects of bath temperature, spray temperature, additives species and concentration of additives were attentively employed to conduct the residual ozone decomposition. The increase of bath temperature and spray temperature can improve the residual ozone decomposition. The residual ozone decomposition can be obviously promoted in spray tower when the spray liquid containing reductive substances. Concentration of additive had a positive effect on ozone decomposition. Compound additive (CaSO3+(NH4)2SO4 or Na2SO3+NaNO2) achieved the highest decomposition among them. The ozone emission at the exit was 0.03×10-6~0.04×10-6, which could satisfy the national emission limit of 0.047×10-6.



Published: 10 September 2015
CLC:  X 701  
Cite this article:

LIN Fa-wei, ZHU Yan-qun, XU Chao-qun, MA Qiang, WANG Zhi-hua, ZHOU Jun-hu, CEN Ke-fa. Experimental study on residual ozone decomposition in process of multi-pollutants removal by ozone. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(7): 1249-1254.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2015.07.007     OR     http://www.zjujournals.com/eng/Y2015/V49/I7/1249


臭氧多脱过程中残留臭氧的分解试验研究

为了实现臭氧氧化多种污染物协同脱除反应后残留臭氧的近零排放,通过实验室模拟某300 MW锅炉烟气臭氧多脱条件,开展残余臭氧的分解试验研究。研究不同水浴温度、喷淋温度、添加剂种类、添加剂浓度等关键参数对脱硫塔及烟囱尾部烟道中残余臭氧分解特性的影响. 试验结果表明,水浴温度和喷淋温度越高,残余臭氧的分解效果越好;喷淋液中加入还原性物质对残余臭氧的分解有很明显的促进作用;添加剂浓度在一定程度上影响残余臭氧的分解效果. 使用CaSO3+(NH4)2SO4或Na2SO3+NaNO2复合型添加剂最终实现超低残余臭氧排放体积分数为0.03×10-6~0.04×10-6,满足了国家环境空气质量标准0.047×10-6.

[1] WANG Zhi-hua, ZHOU Jun-hu, ZHU Yan-qun, et al. Simultaneous removal of NOx, SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection: experimental results [J]. Fuel Processing Technology, 2007, 88(8): 817-823.
[2] 张相,朱燕群,王智化,等. 臭氧氧化多种污染物协同脱除及副产物提纯的试验研究[J]. 工程热物理学报, 2012, 33(7): 1259-1262.
ZHANG Xiang, ZHU Yan-qun, WANG Zhi-hua, et al. Experimental research for multi-pollution control by ozone and by-product purification [J].Journal of Engineering Thermophysics, 2012, 33(7): 1259-1262.
[3] SKALSKA K, MILLER J S, WILK M, et al. Nitrogen oxides ozonation as a method for NOx emission abatement [J]. Ozone: Science and Engineering, 2012, 34(4): 252-258.
[4] SKALSKA K, MILLER J S, LEDAKOWICZ S. Kinetics of nitric oxide oxidation [J]. Chemical Papers, 2010, 64(2): 269-272.
[5] MOK Y S, LEE H J. Removal of sulfur dioxide and nitrogen oxides by using ozone injection and absorption: reduction technique [J]. Fuel Processing Technology, 2006, 87(7): 591-597.
[6] 王智化. 燃煤多种污染物一体化协同脱除机理及反应射流直接数值模拟DNS的研究[D]. 杭州:浙江大学, 2005.
WANG Zhi-hua. Mechanism study on multi-pollution control simultaneously during coal combustion and direct numerical simulation of reaction jets flow [D]. Hangzhou: Zhejiang University, 2005.
[7] STAMATE E, IRIMIEA C, SALEWSKI M. Investigation of NOx reduction by low temperature oxidation using ozone produced by dielectric barrier discharge [J]. Japanese Journal of Applied Physics, 2013, 52(5): 3E-5E.
[8] ZHANG Jia, ZHANG Rui, CHEN Xin, et al. Simultaneous removal of NO and SO2 from flue gas by ozone oxidation and NaOH absorption [J]. Industrial and Engineering Chemistry Research, 2014, 53(15): 6450-6456.
[9] DORA J. Parametric studies of the effectiveness of oxidation of NO by ozone [J]. Chemical and Process Engineering, 2009, 30 (4): 621-634.
[10] SKALSKA K, MILLER J S, LEDAKOWICZ S. Intensification of NOx absorption process by means of ozone injection into exhaust gas stream [J]. Chemical Engineering and Processing: Process Intensification, 2012, 61: 69-74.
[11] WANG Zhi-hua, CEN Ke-fa, ZHOU Jun-hu, et al. Simultaneous multi-pollutants removal in flue gas by ozone [M]. Berlin: Springer, 2014.
[12] GB 3095-2012, 环境空气质量标准[S]. 北京: 中国环境科学出版社, 2012.
[13] GB18066-2000, 居住区大气中臭氧卫生标准[S]. 北京: 中华人民共和国国家质量监督检验检疫总局, 2000.
[14] GB28232-2011, 臭氧发生器安全与卫生标准[S]. 北京: 中华人民共和国卫生部, 2011.
[15] BELTRN F J. Ozone reaction kinetics for water and wastewater systems [M]. [S. l.]:CRC, 2004.
[16] WEISS J. Investigations on the radical HO2 in solution [J]. Transactions of the Faraday Society, 1935, 31(1): 668-681.
[17] STAEHELIN J, HOIGNE J. Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide [J]. Environmental Science and Technology, 1982, 16(10): 676-681.
[18] STAEHELIN J, HOIGNE J. Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions [J]. Environmental Science and Technology, 1985, 19(12): 1206-1213.
[19] BUHLER R, STAEHELIN J, HOIGNE J. Ozone decomposition in water studied by pulse radiolysis 1. HO2/O2 and HO3/O3 as intermediates correction [J]. The Journal of Physical Chemistry, 1984, 88(22): 2560-2564.
[20] STAEHELIN J, BHLER R E, HOIGN J. Ozone decomposition in water studied by pulse radiolysis. 2.hydroxyl and hydrogen tetroxide (HO4) as chain intermediates [J]. The Journal of Physical Chemistry, 1984, 88(24): 5999-6004.
[21] TOMIYASU H, FUKUTOMI H, GORDON G. Kinetics and mechanism of ozone decomposition in basic aqueous solution [J]. Inorganic Chemistry, 1985, 24(19): 2962-2966.
[22] 福奇曼E G, 布朗宁R G.. 臭氧消毒(国际臭氧学会第三次国际会议论文集)[M]. 北京: 中国建筑工业出版社,1983.
[23] 李艳菊. 室内臭氧污染变化规律研究[D]. 天津:天津大学, 2005.
LI Yan-ju. Study on the changing laws of indoor ozone contamination [D]. Tianjin: Tianjin University, 2005.
[24] SEASE W S. Ozone mass transfer and contact systems [C]∥Proceedings of the 2nd International Symposium on Ozone Technology. New York: International Ozone Institute, Syracuse, 1976: 114.
[25] 石志平,王文生. 相对湿度变化对臭氧分解速率的影响 [J]. 保鲜与加工, 2004, 4(6): 24-25.
SHI Zhi-ping, WANG Wen-sheng. Effect of different relative humidity on decomposable rate of ozone [J]. Storage and Process, 2004, 4(6): 24-25.

[1] XU Xi, XU Dian, YAN Pei, ZHU Wei-zhuo, ZHENG Cheng-hang, GAO Xiang, LUO Zhong-yang, NI Ming-jiang, CEN Ke-fa. Particle collection in wire-plate electrostatic precipitators at high temperature[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(3): 487-493.
[2] YU Jin pin, QIU Kun zan, SONG Hao, GAO Xiang, ZHOU Jin song. Catalytic oxidation experiment of element mercury over Cr/TiO2 catalyst[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(11): 2186-2192.
[3] WAN Yi, HUANG Wei-wei, ZHENG Cheng-hang, GAO Xiang, CEN Ke-fa. Spray characteristics of wet electrostatic precipitator[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(2): 336-343.
[4] WANG Hui-ting, DING Hong-lei, YAO Guo-xin, ZHANG Yong-xin,. Experimental study on SO2 absorption rate enhanced by additive in limestone-gypsum WFGD process[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(1): 50-55.
[5] MAO Jian-hong,JIANG Xin-wei,ZHONG Yi,SONG Hao,WU Wei-hong,PAN Shu-ping,GAO Xiang. The effect of splitters layout at variable cross-section
inclined flue on AIG inlet flow field
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(8): 1453-1457.
[6] MAO Jian-hong,SONG Hao,WU Wei-hong,ZHONG Yi,GAO Xiang,LUO Zhong-yang,CEN Ke-fa. Design and optimization of splitters in SCR system for coal fired boiler[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(6): 1124-1129.
[7] YANG Jian-tao, PAN Hua, CHEN Jie, SU Qing-fa, WANG Da-hui, SHI Yao. Two-stage system of non-thermal plasma and adsorption for
decomposition of hydrogen sulfide
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(12): 2411-2415.