Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (11): 2084-2090    DOI: 10.3785/j.issn.1008-973X.2021.11.008
    
Additive manufacturing process of continuous carbon fiber reinforced metal matrix composites
Li-ning YANG(),Yong-di ZHANG,Jin-ye WANG,Hong-jie CHANG,Guang YANG*()
School of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
Download: HTML     PDF(1098KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Systematic experimental exploration was carried out for the additive manufacturing process of continuous carbon fiber reinforced metal matrix composites. Results show that the molten metal matrix and the carbon fiber could be well infiltrated and compounded during the printing process after surface modification of the carbon fiber. The wire feeding speed had a great influence on the surface quality, path width and fiber volume fraction of a single deposition path. When the wire feeding speed was 4 mm/s, the surface quality of the single deposition path was good, the deposition path width was about 1.5 mm, and the volume fraction of carbon fiber was about 3.43%. The overlap rate of the deposition path had a great impact on the surface quality of the printed single layer. When the overlap rate was 50%, the surface quality of the printed single layer was relatively good. The additive manufacturing of continuous carbon fiber reinforced metal matrix composite thin-walled parts and tensile samples were realized based on the optimized experimental parameters. The carbon fiber in the thin-walled part formed a good combination with the metal matrix, and the continuous carbon fiber played a significant role in enhancing the tensile strength of the composite material.



Key wordsadditive manufacturing      metal matrix composite      continuous carbon fiber      Sn-Bi alloy      three dimensional direct writing     
Received: 30 November 2020      Published: 05 November 2021
CLC:  TH 164  
Fund:  河北省高等学校科学技术研究资助项目(QN2019219);河北省省级科技计划资助项目(206Z1806G)
Corresponding Authors: Guang YANG     E-mail: yang_li_ning@126.com;y_guang@126.com
Cite this article:

Li-ning YANG,Yong-di ZHANG,Jin-ye WANG,Hong-jie CHANG,Guang YANG. Additive manufacturing process of continuous carbon fiber reinforced metal matrix composites. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2084-2090.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.11.008     OR     https://www.zjujournals.com/eng/Y2021/V55/I11/2084


连续碳纤维增强金属基复合材料增材制造工艺

针对连续碳纤维增强金属基复合材料增材制造工艺开展系统性实验探索,研究结果表明:在对碳纤维进行表面改性后,可以实现打印过程中熔融金属基体与碳纤维的良好浸润复合;送丝速度对单道沉积路径表面质量、路径宽度及其纤维体积分数影响较大,当送丝速度为4 mm/s时,沉积路径表面质量较好,路径宽度约为1.5 mm,碳纤维体积分数约为3.43%;沉积路径搭接率对打印单层表面质量影响较大,当搭接率为50%时,单层表面质量较好;基于优化后的实验参数,实现了连续碳纤维增强金属基复合材料薄壁件以及拉伸样件的直接增材制造,薄壁件内碳纤维与金属基体形成了较好结合,而且连续碳纤维对于复合后材料的抗拉强度起到了显著增强作用.


关键词: 增材制造,  金属基复合材料,  连续碳纤维,  锡铋合金,  三维直写 
Fig.1 Principle of additive manufacturing process of continuous carbon fiber reinforced metal matrix composites
Fig.2 Schematic diagram of overlap region formed between two adjacent trajectories
Fig.3 Experimental results of surface modification of carbon fiber and its impregnation and composite with metal matrix
Fig.4 Change of mass loss rate of copper-plated carbon fiber after cooling and heating cycles
Fig.5 Morphology of single deposition path of composite material obtained under different wire feeding speed conditions
Fig.6 Cross-section morphology of single deposition path
Fig.7 Variation curve of width of single deposition path and its fiber volume fraction under different wire feeding speeds
Fig.8 Surface topography of printed monolayers under different overlap ratios
Fig.9 Continuous carbon fiber reinforced metal matrix composite thin-walled parts formed by additive manufacturing
Fig.10 Micro morphology of combination of carbon fiber and metal matrix inside thin-walled parts
Fig.11 Photographs of deposition molding, machining and breaking samples
[1]   HAGEDORN Y C, BALACHANDRAN N, MEINERSW W, et al SLM of net-shaped high strength ceramics: new opportunities for producing dental restorations[J]. Proceeding of the Solid Freeform Fabrication Symposium, 2011, 10: 536- 546
[2]   CHLEBUS E, KUZNICKA B, KURZYNOWSKI T, et al Microstructure and mechanical behavior of Ti-6Al-7Nb alloy produced by selective laser melting[J]. Materials Characterization, 2011, 62 (5): 488- 495
doi: 10.1016/j.matchar.2011.03.006
[3]   BUCHBINDER D, SCHLEIFENBAUM H, HEIDRICH S, et al High power selective la-ser melting (HP SLM) of aluminum parts[J]. Physics Procedia, 2011, 12: 271- 278
doi: 10.1016/j.phpro.2011.03.035
[4]   李卿, 赵国瑞, 马文有, 等 选区激光熔化成形多孔Ti6Al4V(ELI)合金的拉伸性能及断裂机制[J]. 材料导报, 2020, 34 (2): 4073- 4076
LI Qing, ZHAO Guo-rui, MA Wen-you, et al Mechanical properties and fracture mechanism of porous Ti6Al4V (ELI) alloy fabricated by selective laser melting[J]. Materials Reports, 2020, 34 (2): 4073- 4076
[5]   孙靖, 朱小刚, 李鹏, 等 激光体能量密度对激光选区熔化成形TC4钛合金致密化行为的影响[J]. 机械工程材料, 2020, 44 (1): 51- 56
SUN Jing, ZHU Xiao-gang, LI Peng, et al Effect of laser bulk energy density on densification behavior of TC4 titanium alloy by SLM[J]. Materials for Mechanical Engineering, 2020, 44 (1): 51- 56
doi: 10.11973/jxgccl202001009
[6]   杨威, 陈志国, 汪力, 等 镍基合金Inconel740激光近净成形多方向温度场[J]. 中国有色金属学报, 2018, 28 (8): 1579- 1586
YANG Wei, CHEN Zhi-guo, WANG Li, et al Multi-direction temperature field of Inconel 740 nickel based alloy in laser engineered net shaping[J]. The Chinese Journal of Nonferrous Metals, 2018, 28 (8): 1579- 1586
[7]   郭超, 林峰, 葛文君 电子束选区熔化成形316L不锈钢的工艺研究[J]. 机械工程学报, 2014, 50 (21): 152- 158
GUO Chao, LIN Feng, GE Wen-jun Study on the fabrication process of 316L stain-less steel via electron beam selective melting[J]. Journal of Mechanical Engineering, 2014, 50 (21): 152- 158
doi: 10.3901/JME.2014.21.152
[8]   晏耐生, 林峰, 齐海波, 等 电子束选区熔化技术中可控振动落粉铺粉系统的研究[J]. 中国机械工程, 2010, 21 (19): 2379- 2382
YAN Nai-sheng, LIN Feng, QI Hai-bo, et al Study on controllable vibration powder spreading system in electron beam selective melting[J]. China Mechanical Engineering, 2010, 21 (19): 2379- 2382
[9]   杨立宁, 单忠德, 戎文娟, 等 低熔点金属熔融三维直写技术研究[J]. 中南大学学报: 自然科学版, 2018, 49 (10): 2405- 2412
YANG Li-ning, SHAN Zhong-de, RONG Wen-juan, et al Three-dimensional direct writing technology of low melting point molten metal[J]. Journal of Central South University: Science and Technology, 2018, 49 (10): 2405- 2412
doi: 10.11817/j.issn.1672-7207.2018.10.006
[10]   杨立宁, 单忠德, 戎文娟, 等 锌合金熔融沉积三维打印工艺[J]. 浙江大学学报: 工学版, 2018, 52 (7): 1364- 1369
YANG Li-ning, SHAN Zhong-de, RONG Wen-juan, et al Three-dimensional printing technology of zinc alloy fused and deposition[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (7): 1364- 1369
[11]   单忠德, 杨立宁, 刘丰, 等 金属材料喷射沉积3D打印工艺[J]. 中南大学学报: 自然科学版, 2016, 47 (11): 3642- 3647
SHAN Zhong-de, YANG Li-ning, LIU Feng, et al Three-dimensional printing technology based on metal spray and deposition[J]. Journal of Central South University: Science and Technology, 2016, 47 (11): 3642- 3647
[12]   KLIFT F V D, KOGA Y, TODOROKI A, et al 3D printing of continuous carbon fiber rein-forced thermo-plastic CFRTP tensile test specimens[J]. Open Journal of Composite Materials, 2016, 6 (1): 18- 27
doi: 10.4236/ojcm.2016.61003
[13]   JUSTO J, TAVARA L, GARCIAGUZMAN L, et al Characterization of 3D printed long fiber reinforced composite[J]. Composite Structures, 2017, 185: 537- 548
[14]   CAMINERO M A, CHACON J M, GARCIAMORENO I, et al Impact damage resistance of 3D printed continuous fiber rein-forced thermoplastic composites using fused deposition modelling[J]. Composites, Part B: Engineering, 2018, 148: 93- 103
doi: 10.1016/j.compositesb.2018.04.054
[15]   TIAN X, LIU T, YANG C, et al Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites[J]. Composites, Part A: Applied Science and Manufacturing, 2016, 88: 198- 205
doi: 10.1016/j.compositesa.2016.05.032
[16]   YANG C, TIAN X, LIU T, et al 3D printing for continuous fiber reinforced thermoplastic composites: mechanism and performance[J]. Rapid Prototyping Journal, 2017, 23 (1): 209- 215
doi: 10.1108/RPJ-08-2015-0098
[17]   单忠德, 范聪泽, 孙启利, 等 纤维增强树脂基复合材料增材制造技术与装备研究[J]. 中国机械工程, 2020, 31 (2): 221- 226
SHAN Zhong-de, FAN Cong-ze, SUN Qi-li, et al Research on additive manufacturing technology and equipment for fiber reinforced resin composites[J]. China Mechanical Engineering, 2020, 31 (2): 221- 226
doi: 10.3969/j.issn.1004-132X.2020.02.007
[18]   MATSUZAKI R, UEDA M, NAMIKI M, et al Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation[J]. Scientific Reports, 2016, 6: 23058
doi: 10.1038/srep23058
[19]   WANG X, TIAN X Y, YIN L X, et al 3D printing of continuous fiber reinforced low melting point alloy matrix composites: mechanical properties and microstructures[J]. Materials, 2020, 13 (16): 1- 15
[20]   WANG X, TIAN X Y, LIAN Q, et al Fiber traction printing: a 3D printing method of continuous fiber reinforced metal matrix composite[J]. Chinese Journal of Mechanical Engineering, 2020, 33 (11): 1- 11
doi: 10.1186/s10033-020-00447-1
[1] Xiao-wei LIU,Yun CHEN,Si ZHANG,Kang CHEN. Dynamic monitoring and identification of wire feeder in FDM-based additive manufacturing[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 548-554.
[2] Chao-ming SUN,Kai-hua SUN,Guo-wei WANG,Ji-qiang GE,En-fu LIANG. Resonant ultrasound spectroscopy evaluation of additively manufactured lattice structure[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2076-2083.
[3] Bin LI,Jian-zhong FU. Solid modeling and slicing process of heterogeneous materials based on trivariate T-splines[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 135-144.
[4] Jun DU,Chen MA,Zheng-ying WEI. Dynamic response of surface morphology of aluminum (Al) deposited layers in wire and arc additive manufacturing based on visual sensing[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1481-1489.
[5] SHAO Hui-feng, HE Yong, FU Jian-zhong. Research advance of degradable artificial bone with additive manufacturing: customization from geometric shape to property[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(6): 1035-1057.
[6] DU Jun, WANG Xin, REN Chuan-qi, BAI Hao. Morphology analysis of thin-wallparts by metal fused-coating additive manufacturing[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(1): 24-28.