Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (11): 2076-2083    DOI: 10.3785/j.issn.1008-973X.2021.11.007
    
Resonant ultrasound spectroscopy evaluation of additively manufactured lattice structure
Chao-ming SUN(),Kai-hua SUN,Guo-wei WANG,Ji-qiang GE,En-fu LIANG
Institute of Machinery Manufacturing Technology, China Academy of Engineering Physics, Mianyang 621900, China
Download: HTML     PDF(1083KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Resonant ultrasound spectroscopy (RUS) was optimistically selected to study feasibility and implementation details of the testing method, in order to accomplish reliable and quick evaluation of the lattice components additively manufactured. A series of lattice structures of Ti-6Al-4V which contains planar defects of different widths was manufactured by additive manufacturing process. Experiments were carried out based on a home-made RUS system, and longitudinal ultrasonic transducers were used as the transmitter and receiver. The resonant frequencies and vibration modes were identified by setting suitable experimental parameters, and then a reliable combination of resonant frequencies was chosen to evaluate the defects by constructing a Mahalanobis space. Finally, the Mahalanobis distance was calculated for each specimen and defects were analyzed quantitatively. Experimental results show that resonant frequency peaks can be detected obviously and repeatedly even for the lattice components with complex structures. Results show that there is a strong correlation between positions of certain resonant frequency peak and the size of defect. Comparing with traditional non-destruction testing (NDT) method, RUS provides a favorable NDT solution for the lattice structure additively manufactured.



Key wordsadditive manufacturing      lattice structure      resonant ultrasound spectroscopy      resonant frequency      Mahalanobis distance     
Received: 14 January 2021      Published: 05 November 2021
CLC:  O 422.6  
  TB 52+6  
Fund:  国家自然科学技术基金委员会-中国工程物理研究院联合基金资助项目(1930207)
Cite this article:

Chao-ming SUN,Kai-hua SUN,Guo-wei WANG,Ji-qiang GE,En-fu LIANG. Resonant ultrasound spectroscopy evaluation of additively manufactured lattice structure. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2076-2083.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.11.007     OR     https://www.zjujournals.com/eng/Y2021/V55/I11/2076


增材制造点阵结构的超声共振谱性能表征

为了实现增材制造的点阵构件性能的可靠、快捷评判,优选超声共振谱技术进行检测方法研究. 使用增材制造工艺,制作了一系列Ti-6Al-4V的点阵结构试样,结构内含有不同宽度的平面型缺陷. 基于自建的超声共振谱检测系统开展试验,利用纵波超声换能器作为振动的激励源与接收传感器. 对共振频率与振动模态进行甄别,选取可靠的共振频率组合作为评判指标,构建马氏空间,按马氏距离对缺陷进行定量分析. 试验结果表明,虽然点阵试样结构复杂,但仍可以测得清晰明显的共振频率峰,且测量结果重现性好. 结果分析表明,点阵试样的共振频率峰位置与缺陷尺寸大小有强相关性,采用马氏距离可以实现缺陷的定量评价. 研究表明,超声共振谱技术为增材制造的复杂点阵构件的性能表征提供了较好的无损检测(NDT)解决方案.


关键词: 增材制造,  点阵结构,  超声共振谱,  共振频率,  马氏距离 
Fig.1 Model of lattice structure specimen
Fig.2 CT image of DZ-0.1 specimen
Fig.3 Diagram of resonant ultrasound spectroscopy testing
序号 f/kHz 序号 f/kHz
1 53.8 6 70.5
2 57.6 7 72.2
3 60.6 8 74.2
4 62.1 9 78.0
5 65.5 10 79.5
Tab.1 Resonant frequency of DZ-0.6 specimen
Fig.4 Different vibration modes of specimen
Fig.5 Measured resonant spectrum of DZ-0.6 specimen
Fig.6 Resonant ultrasound spectra of lattice structure specimens
Fig.7 Comparison of resonant frequencies
Fig.8 Correlation of resonant frequencies of No.4 and No.7
Fig.9 Evaluation of testing specimens by MDs
Fig.10 Comparison of MDs of different flaws
[1]   KING W E, ANDERSON A T, FERENCZ R M, et al Laser powder bed fusion additive manufacturing of metals: physics, computational, and materials challenges[J]. Applied Physics Review, 2015, 2: 041304
doi: 10.1063/1.4937809
[2]   FROES F, BOYER R. Additive manufacturing for the aerospace industry [M]. Chennai: Elsevier, 2019.
[3]   汤海波, 吴宇, 张述泉, 等 高性能大型金属构件激光增材制造技术研究现状与发展趋势[J]. 精密成形工程, 2019, 11 (4): 58- 63
TANG Hai-Bo, WU Yu, ZHANG Shu-quan, et al Research status and development trend of high performance large metallic components by laser additive manufacturing technique[J]. Journal of Netshape Forming Engineering, 2019, 11 (4): 58- 63
doi: 10.3969/j.issn.1674-6457.2019.04.008
[4]   DIEGEL O, NORDIN A, MOTTE D. A practical guide to design for additive manufacturing [M]. Singapore: Springer, 2020.
[5]   杨平华, 高祥熙, 梁菁, 等 金属增材制造技术发展动向及无损检测研究进展[J]. 材料工程, 2017, 45 (9): 13- 21
YANG Ping-hua, GAO Xiang-xi, LIANG Jing, et al Development trend and NDT progress of metal additive manufacture technique[J]. Journal of Materials Engineering, 2017, 45 (9): 13- 21
doi: 10.11868/j.issn.1001-4381.2016.001226
[6]   吴正凯, 吴圣川, 张杰, 等 基于同步辐射X射线成像的选区激光熔化Ti-6Al-4V合金缺陷致疲劳行为[J]. 金属学报, 2019, 55 (7): 811- 820
WU Zheng-kai, WU Sheng-chuan, ZHANG Jie, et al Defect induced fatigue behaviors of selective laser melted Ti-6Al-4V via synchrotron radiation X-ray tomography[J]. Acta Metallurgica Sinica, 2019, 55 (7): 811- 820
doi: 10.11900/0412.1961.2018.00408
[7]   ZHOU X, DAI N, CHU M, et al X-ray CT analysis of the influence of process on defect in Ti-6Al-4V parts produced with selective laser melting technology[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106 (1/2): 3- 14
[8]   THOMPSON A, MASKERY I, LEACH R K X-ray computed tomography for additive manufacturing: a review[J]. Measurement Science and Technology, 2016, 27: 072001
doi: 10.1088/0957-0233/27/7/072001
[9]   BECERRA P A I H, ORDAZ M B, LUNA M V, et al Comparison of time-domain and frequency-domain contact resonant ultrasound spectroscopy[J]. Instruments and Experimental Techniques, 2019, 62 (2): 241- 246
doi: 10.1134/S0020441219020118
[10]   SCHWARZ R B, VUORINEN J F Resonant ultrasound spectroscopy: applications, current status and limitations[J]. Journal of Alloys and Compounds, 2000, 310: 243- 250
doi: 10.1016/S0925-8388(00)00925-7
[11]   MAYNARD J Resonant ultrasound spectroscopy[J]. Physics Today, 1996, 49 (1): 26- 31
doi: 10.1063/1.881483
[12]   MIGLIORI A, MAYNARD J D Implementation of a modern resonant ultrasound spectroscopy system for the measurement of the elastic moduli of small solid specimens[J]. Review of Scientific Instruments, 2005, 76: 121301
doi: 10.1063/1.2140494
[13]   冯丹丹, 樊璠, 王蕊, 等 基于超声共振谱方法的人牙釉质材料力学特性研究[J]. 医用生物力学, 2017, 32 (5): 448- 453
FENG Dan-dan, FAN Fan, WANG Rui, et al Mechanical properties of human enamel based on resonant ultrasound spectroscopy[J]. Journal of Medical Biomechanics, 2017, 32 (5): 448- 453
[14]   DRIVER S L, JONES N G, STONE H J, et al On the effect of hydrogen on the elastic moduli and acoustic loss behaviour of Ti-6Al-4V[J]. Philosophical Magazine, 2016, 96 (22): 2311- 2327
doi: 10.1080/14786435.2016.1198054
[15]   FLYNN K, RADOVIC M Evaluation of defects in materials using resonant ultrasound spectroscopy[J]. Journal of Materials Science, 2011, 46: 2548- 2556
doi: 10.1007/s10853-010-5107-y
[16]   GOODLET B R, TORBET C J, BIEDERMANN E J, et al Forward models for extending the mechanical damage evaluation capability of resonant ultrasound spectroscopy[J]. Ultrasonics, 2017, 77: 183- 196
doi: 10.1016/j.ultras.2017.02.002
[17]   MIGLIORI A, DARLING T W Resonant ultrasound spectroscopy for materials studies and non-destructive testing[J]. Ultrasonics, 1996, 34: 473- 476
doi: 10.1016/0041-624X(95)00120-R
[18]   RETTBERG L H, GOODLET B R, POLLOCK T M Detecting recrystallization in a single crystal Ni-base alloy using resonant ultrasound spectroscopy[J]. NDT and E International, 2016, 83: 68- 77
doi: 10.1016/j.ndteint.2016.05.004
[19]   HEFFERNAN J, JAURIQUI L, BIEDERMANN E, et al Process compensated resonance testing models for quantification of creep damage in single crystal nickel-based superalloys[J]. Materials Evaluation, 2017, 75: 941- 952
[20]   SCHWARZ J, SAXTON J, JAURIQUI L Process compensated resonant testing in manufacturing process control[J]. Materials Evaluation, 2005, 63: 736- 739
[21]   SIDAMBE A T, CHOONG W L, HAMILTON H G C, et al Correlation of metal injection moulded Ti6Al4V yield strength with resonance frequency (PCRT) measurements[J]. Materials Science and Engineering: A, 2013, 568: 220- 227
doi: 10.1016/j.msea.2013.01.040
[22]   LEISURE R G, WILLIS F A Resonant ultrasound spectroscopy[J]. Journal of Physics of Condensed Matter, 1997, 9: 6001- 6029
doi: 10.1088/0953-8984/9/28/002
[23]   DEMAREST H H Cube-resonance method to determine the elastic constants of solids[J]. Journal of the Acoustical Society of America, 1971, 49 (3): 768- 775
[24]   NAKAMURA N, OGI H, HIRAO M Review on acoustic transducers for resonant ultrasound spectroscopy[J]. Jom, 2015, 67 (8): 1849- 1855
doi: 10.1007/s11837-015-1457-x
[25]   OGI H, SATO K, ASADA T, et al Complete mode identification for resonance ultrasound spectroscopy[J]. Journal of the Acoustical Society of America, 2002, 112 (6): 2553- 2557
doi: 10.1121/1.1512700
[26]   CHEN Z, MIAO X, LI S, et al Data fusion method and probabilistic pairing approach in elastic constants measurement by resonance ultrasound spectroscopy[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69 (6): 2948- 2958
doi: 10.1109/TIM.2019.2925409
[1] Xiao-wei LIU,Yun CHEN,Si ZHANG,Kang CHEN. Dynamic monitoring and identification of wire feeder in FDM-based additive manufacturing[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 548-554.
[2] Zhu-ye XU,Xiao-qiang ZHAO,Hong-mei JIANG. 3D model fitting method based on point distribution model[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2373-2381.
[3] Li-ning YANG,Yong-di ZHANG,Jin-ye WANG,Hong-jie CHANG,Guang YANG. Additive manufacturing process of continuous carbon fiber reinforced metal matrix composites[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2084-2090.
[4] Bin LI,Jian-zhong FU. Solid modeling and slicing process of heterogeneous materials based on trivariate T-splines[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 135-144.
[5] Jun DU,Chen MA,Zheng-ying WEI. Dynamic response of surface morphology of aluminum (Al) deposited layers in wire and arc additive manufacturing based on visual sensing[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1481-1489.
[6] Cong-cong FU,Xing-fei LI,Shao-bo YANG,Hong-yu LI,Wen-bin TAN. Frequency splitting characteristics and maximum power point analysis of ICPT system with ocean buoys[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 475-482.
[7] SHAO Hui-feng, HE Yong, FU Jian-zhong. Research advance of degradable artificial bone with additive manufacturing: customization from geometric shape to property[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(6): 1035-1057.
[8] DU Jun, WANG Xin, REN Chuan-qi, BAI Hao. Morphology analysis of thin-wallparts by metal fused-coating additive manufacturing[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(1): 24-28.
[9] CHEN Wei gang, DENG Hua,BAI Guangbo,DONG Shi lin, ZHU Zhong yi. Load bearing behavior of bearing joint of flat aluminum alloy lattice structures[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 831-840.
[10] CHEN Xu-dong, CHENG Fang, FENG Pan. Dynamic performance analysis of high-order control system[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(1): 141-148.
[11] LIU Zhen-tao, ZHANG Peng-wei, YU Xiao-li, LI Jian-feng, CHEN Zhan-shan. Fatigue crack diagnosis of engine-block by time series analysis[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(3): 489-493.
[12] YU Ming-hu, ZHANG Yu-qiu, LU Qin-fen, YE Yun-yue. Design of moving-magnet transverse-flux linear oscillatory motor[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(2): 206-211.
[13] TANG Ke, LEI Tian, LIN Xiao-gang, JIN Tao. Performance comparison of thermoacoustic engine with
gas-liquid and gas oscillation
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(7): 1244-1247.
[14] YU Ming-hu, LU Qin-fen, YE Yun-yue, XIA Yong-ming. High efficiency control strategy for linear oscillatory
motor with two separated stators
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(5): 799-803.