|
|
Resonant ultrasound spectroscopy evaluation of additively manufactured lattice structure |
Chao-ming SUN( ),Kai-hua SUN,Guo-wei WANG,Ji-qiang GE,En-fu LIANG |
Institute of Machinery Manufacturing Technology, China Academy of Engineering Physics, Mianyang 621900, China |
|
|
Abstract Resonant ultrasound spectroscopy (RUS) was optimistically selected to study feasibility and implementation details of the testing method, in order to accomplish reliable and quick evaluation of the lattice components additively manufactured. A series of lattice structures of Ti-6Al-4V which contains planar defects of different widths was manufactured by additive manufacturing process. Experiments were carried out based on a home-made RUS system, and longitudinal ultrasonic transducers were used as the transmitter and receiver. The resonant frequencies and vibration modes were identified by setting suitable experimental parameters, and then a reliable combination of resonant frequencies was chosen to evaluate the defects by constructing a Mahalanobis space. Finally, the Mahalanobis distance was calculated for each specimen and defects were analyzed quantitatively. Experimental results show that resonant frequency peaks can be detected obviously and repeatedly even for the lattice components with complex structures. Results show that there is a strong correlation between positions of certain resonant frequency peak and the size of defect. Comparing with traditional non-destruction testing (NDT) method, RUS provides a favorable NDT solution for the lattice structure additively manufactured.
|
Received: 14 January 2021
Published: 05 November 2021
|
|
Fund: 国家自然科学技术基金委员会-中国工程物理研究院联合基金资助项目(1930207) |
增材制造点阵结构的超声共振谱性能表征
为了实现增材制造的点阵构件性能的可靠、快捷评判,优选超声共振谱技术进行检测方法研究. 使用增材制造工艺,制作了一系列Ti-6Al-4V的点阵结构试样,结构内含有不同宽度的平面型缺陷. 基于自建的超声共振谱检测系统开展试验,利用纵波超声换能器作为振动的激励源与接收传感器. 对共振频率与振动模态进行甄别,选取可靠的共振频率组合作为评判指标,构建马氏空间,按马氏距离对缺陷进行定量分析. 试验结果表明,虽然点阵试样结构复杂,但仍可以测得清晰明显的共振频率峰,且测量结果重现性好. 结果分析表明,点阵试样的共振频率峰位置与缺陷尺寸大小有强相关性,采用马氏距离可以实现缺陷的定量评价. 研究表明,超声共振谱技术为增材制造的复杂点阵构件的性能表征提供了较好的无损检测(NDT)解决方案.
关键词:
增材制造,
点阵结构,
超声共振谱,
共振频率,
马氏距离
|
|
[1] |
KING W E, ANDERSON A T, FERENCZ R M, et al Laser powder bed fusion additive manufacturing of metals: physics, computational, and materials challenges[J]. Applied Physics Review, 2015, 2: 041304
doi: 10.1063/1.4937809
|
|
|
[2] |
FROES F, BOYER R. Additive manufacturing for the aerospace industry [M]. Chennai: Elsevier, 2019.
|
|
|
[3] |
汤海波, 吴宇, 张述泉, 等 高性能大型金属构件激光增材制造技术研究现状与发展趋势[J]. 精密成形工程, 2019, 11 (4): 58- 63 TANG Hai-Bo, WU Yu, ZHANG Shu-quan, et al Research status and development trend of high performance large metallic components by laser additive manufacturing technique[J]. Journal of Netshape Forming Engineering, 2019, 11 (4): 58- 63
doi: 10.3969/j.issn.1674-6457.2019.04.008
|
|
|
[4] |
DIEGEL O, NORDIN A, MOTTE D. A practical guide to design for additive manufacturing [M]. Singapore: Springer, 2020.
|
|
|
[5] |
杨平华, 高祥熙, 梁菁, 等 金属增材制造技术发展动向及无损检测研究进展[J]. 材料工程, 2017, 45 (9): 13- 21 YANG Ping-hua, GAO Xiang-xi, LIANG Jing, et al Development trend and NDT progress of metal additive manufacture technique[J]. Journal of Materials Engineering, 2017, 45 (9): 13- 21
doi: 10.11868/j.issn.1001-4381.2016.001226
|
|
|
[6] |
吴正凯, 吴圣川, 张杰, 等 基于同步辐射X射线成像的选区激光熔化Ti-6Al-4V合金缺陷致疲劳行为[J]. 金属学报, 2019, 55 (7): 811- 820 WU Zheng-kai, WU Sheng-chuan, ZHANG Jie, et al Defect induced fatigue behaviors of selective laser melted Ti-6Al-4V via synchrotron radiation X-ray tomography[J]. Acta Metallurgica Sinica, 2019, 55 (7): 811- 820
doi: 10.11900/0412.1961.2018.00408
|
|
|
[7] |
ZHOU X, DAI N, CHU M, et al X-ray CT analysis of the influence of process on defect in Ti-6Al-4V parts produced with selective laser melting technology[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106 (1/2): 3- 14
|
|
|
[8] |
THOMPSON A, MASKERY I, LEACH R K X-ray computed tomography for additive manufacturing: a review[J]. Measurement Science and Technology, 2016, 27: 072001
doi: 10.1088/0957-0233/27/7/072001
|
|
|
[9] |
BECERRA P A I H, ORDAZ M B, LUNA M V, et al Comparison of time-domain and frequency-domain contact resonant ultrasound spectroscopy[J]. Instruments and Experimental Techniques, 2019, 62 (2): 241- 246
doi: 10.1134/S0020441219020118
|
|
|
[10] |
SCHWARZ R B, VUORINEN J F Resonant ultrasound spectroscopy: applications, current status and limitations[J]. Journal of Alloys and Compounds, 2000, 310: 243- 250
doi: 10.1016/S0925-8388(00)00925-7
|
|
|
[11] |
MAYNARD J Resonant ultrasound spectroscopy[J]. Physics Today, 1996, 49 (1): 26- 31
doi: 10.1063/1.881483
|
|
|
[12] |
MIGLIORI A, MAYNARD J D Implementation of a modern resonant ultrasound spectroscopy system for the measurement of the elastic moduli of small solid specimens[J]. Review of Scientific Instruments, 2005, 76: 121301
doi: 10.1063/1.2140494
|
|
|
[13] |
冯丹丹, 樊璠, 王蕊, 等 基于超声共振谱方法的人牙釉质材料力学特性研究[J]. 医用生物力学, 2017, 32 (5): 448- 453 FENG Dan-dan, FAN Fan, WANG Rui, et al Mechanical properties of human enamel based on resonant ultrasound spectroscopy[J]. Journal of Medical Biomechanics, 2017, 32 (5): 448- 453
|
|
|
[14] |
DRIVER S L, JONES N G, STONE H J, et al On the effect of hydrogen on the elastic moduli and acoustic loss behaviour of Ti-6Al-4V[J]. Philosophical Magazine, 2016, 96 (22): 2311- 2327
doi: 10.1080/14786435.2016.1198054
|
|
|
[15] |
FLYNN K, RADOVIC M Evaluation of defects in materials using resonant ultrasound spectroscopy[J]. Journal of Materials Science, 2011, 46: 2548- 2556
doi: 10.1007/s10853-010-5107-y
|
|
|
[16] |
GOODLET B R, TORBET C J, BIEDERMANN E J, et al Forward models for extending the mechanical damage evaluation capability of resonant ultrasound spectroscopy[J]. Ultrasonics, 2017, 77: 183- 196
doi: 10.1016/j.ultras.2017.02.002
|
|
|
[17] |
MIGLIORI A, DARLING T W Resonant ultrasound spectroscopy for materials studies and non-destructive testing[J]. Ultrasonics, 1996, 34: 473- 476
doi: 10.1016/0041-624X(95)00120-R
|
|
|
[18] |
RETTBERG L H, GOODLET B R, POLLOCK T M Detecting recrystallization in a single crystal Ni-base alloy using resonant ultrasound spectroscopy[J]. NDT and E International, 2016, 83: 68- 77
doi: 10.1016/j.ndteint.2016.05.004
|
|
|
[19] |
HEFFERNAN J, JAURIQUI L, BIEDERMANN E, et al Process compensated resonance testing models for quantification of creep damage in single crystal nickel-based superalloys[J]. Materials Evaluation, 2017, 75: 941- 952
|
|
|
[20] |
SCHWARZ J, SAXTON J, JAURIQUI L Process compensated resonant testing in manufacturing process control[J]. Materials Evaluation, 2005, 63: 736- 739
|
|
|
[21] |
SIDAMBE A T, CHOONG W L, HAMILTON H G C, et al Correlation of metal injection moulded Ti6Al4V yield strength with resonance frequency (PCRT) measurements[J]. Materials Science and Engineering: A, 2013, 568: 220- 227
doi: 10.1016/j.msea.2013.01.040
|
|
|
[22] |
LEISURE R G, WILLIS F A Resonant ultrasound spectroscopy[J]. Journal of Physics of Condensed Matter, 1997, 9: 6001- 6029
doi: 10.1088/0953-8984/9/28/002
|
|
|
[23] |
DEMAREST H H Cube-resonance method to determine the elastic constants of solids[J]. Journal of the Acoustical Society of America, 1971, 49 (3): 768- 775
|
|
|
[24] |
NAKAMURA N, OGI H, HIRAO M Review on acoustic transducers for resonant ultrasound spectroscopy[J]. Jom, 2015, 67 (8): 1849- 1855
doi: 10.1007/s11837-015-1457-x
|
|
|
[25] |
OGI H, SATO K, ASADA T, et al Complete mode identification for resonance ultrasound spectroscopy[J]. Journal of the Acoustical Society of America, 2002, 112 (6): 2553- 2557
doi: 10.1121/1.1512700
|
|
|
[26] |
CHEN Z, MIAO X, LI S, et al Data fusion method and probabilistic pairing approach in elastic constants measurement by resonance ultrasound spectroscopy[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69 (6): 2948- 2958
doi: 10.1109/TIM.2019.2925409
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|