Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (3): 548-554    DOI: 10.3785/j.issn.1008-973X.2021.03.015
    
Dynamic monitoring and identification of wire feeder in FDM-based additive manufacturing
Xiao-wei LIU1(),Yun CHEN1,2,*(),Si ZHANG1,Kang CHEN1
1. School of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
2. Jiangsu Key Laboratory of Advance Manufacturing of Ship and Ocean Machinery Equipment, Zhenjiang 212003, China
Download: HTML     PDF(1180KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An acceleration vibration sensor was used to monitor the working state of the motor in the wire feeder, in order to study the effect of abnormal flow ratio (the ratio between the printing speed of the printer and the extrusion speed of the wire material) on nozzle blocking or lamination of printed products in the additive manufacturing process. The vibration signal of the wire feeder motor in different motion state during the printing process were collected, and the Fourier transform method was used to convert the time domain signal into frequency domain signal. Based on a frequency domain data, the characteristic value that characterizes the difference between each group of signals was extracted, KNN classification algorithm and K-fold cross-validation were introduced, the characteristic quantity was studied to clarity the relationship between the failure mode and the signal, to identify the different motion states of the wire feeder. Experimental results show that the proposed monitoring method has an accuracy of 92.73% for the identification of abnormal flow ratio, by using the signal frequency domain data difference as the characteristic quantity.



Key wordsadditive manufacturing      fused deposition modeling (FDM)      filament feeding      flow ratio      process monitoring     
Received: 16 January 2020      Published: 25 April 2021
CLC:  TP 181  
Fund:  国家自然科学基金资助项目(51705214,51875003);江苏省自然科学基金资助项目(BK20170582)
Corresponding Authors: Yun CHEN     E-mail: issue_ge@foxmail.com;yunchen.just@foxmail.com
Cite this article:

Xiao-wei LIU,Yun CHEN,Si ZHANG,Kang CHEN. Dynamic monitoring and identification of wire feeder in FDM-based additive manufacturing. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 548-554.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.03.015     OR     http://www.zjujournals.com/eng/Y2021/V55/I3/548


FDM型增材制造中送丝机构动态监测与识别

为了研究在增材制造过程中,流量比(打印机打印速度与丝材挤出速度之间的比值)的异常状态对喷头阻塞或打印产品分层现象的影响情况,采用加速度振动传感器监测送丝机构中电机的工作状态. 采集打印过程中送丝机构电机不同运动状态的振动信号,利用傅里叶变换方法将时域信号转换成频域信号. 基于频域数据提取表征每组信号间差异的特征值,通过KNN分类算法并引入K折交叉验证,研究特征量以明确故障模式与信号的关系,识别送丝机构的不同运动状态. 实验结果表明,以信号频域数据差异为特征量提出的监测方法对异常流量比的识别准确率达到92.73%.


关键词: 增材制造,  熔融沉积成型(FDM),  送丝机构,  流量比,  过程监测 
Fig.1 Structure of 3D Printer
Fig.2 Monitoring platform of wire feeding mechanism
Fig.3 KNN Classification algorithm schematic
Fig.4 The diagram of K-fold cross-validation
真实值 预测值
正例 负例
正例 A B
负例 C D
Tab.1 Confusion matrix of binary classification
真实类 预测类
1 2 $ \cdots $ n
1 ${a_{11}}$ ${a_{12}}$ $ \cdots $ ${a_{1n}}$
2 ${a_{21}}$ ${a_{22}}$ $ \cdots $ ${a_{2n}}$
$ \vdots $ $ \vdots $ $ \vdots $ $\vdots$ $ \vdots $
n ${a_{n1}}$ ${a_{n2}}$ $ \cdots $ ${a_{nn}}$
Tab.2 Confusion matrix of multi-classification
Fig.5 Time-domain diagram of vibration signals in different motion states of wire feeding mechanism
Fig.6 Amplitude-frequency diagram of vibration signal in different motion states of wire feeding mechanism
Fig.7 Accuracy of different Ҡ
Fig.8 Average results of 10 times 5-fold training
Fig.9 Classification results of different motion states signals of wire feeding mechanism
真实值 预测值
类1 类2 类3
类1 54 3 3
类2 2 95 3
类3 0 5 55
Tab.3 Confusion matrix of tri-classification of different motion states of wire feeding mechanism
类别 SE/% SP/% AN/%
类1 90.00 98.75 92.73
类2 95.00 93.33 92.73
类3 91.76 96.25 92.73
Tab.4 Numerical statistics of tri-classification
[1]   VYAVAHARE S, TERAIYA S, PANGHAL D, et al Fused deposition modelling: a review[J]. Rapid Prototyping Journal, 2020, 26 (1): 176- 201
doi: 10.1108/RPJ-04-2019-0106
[2]   鹿芳芳, 朱峰, 陈晓旭, 等 3D打印在汽车行业的应用[J]. 汽车实用技术, 2020, (6): 152- 154
LU Fang-fang, ZHU Feng, CHEN Xiao-xu, et al Appli-cation of 3D printing in automobile industry[J]. Utomo-bile Technology, 2020, (6): 152- 154
[3]   吴海曦. 面向增材制造的声发射监测技术及应用研究[D]. 杭州: 浙江大学, 2017.
WU Hai-xi. Research on acoustic emission monitoring technology and application for additive manufacturing [D]. Hangzhou: Zhejiang University, 2017.
[4]   LI Jia-qiang, XIE Hui-min, MA Kang In-situ monitoring of the deformation during Fused Deposition Modeling process using CGS method[J]. Polymer Testing, 2019, 76: 166- 172
doi: 10.1016/j.polymertesting.2019.03.030
[5]   LIU J, HU Y M, WU B, et al An improved fault diagnosis approach for FDM process with acoustic emission[J]. Journal of Manufacturing Processes, 2018, 35: 570- 579
doi: 10.1016/j.jmapro.2018.08.038
[6]   KOUSIATZA C, KARALEKAS D In-situ monitoring of strain and temperature distributions during fused deposition modeling process[J]. Materials and Design, 2016, 97: 400- 406
doi: 10.1016/j.matdes.2016.02.099
[7]   吴海曦, 余忠华, 张浩, 等 面向熔融沉积成型的3D打印机故障声发射监控方法[J]. 浙江大学学报:工学版, 2016, (50): 78- 84
WU Hai-xi, YU Zhong-hua, ZHANG Hao 3D printer fault acoustic emission monitoring method for fused dep-osition molding[J]. Journal of Zhejiang University: Engineering Science, 2016, (50): 78- 84
[8]   WANG H Y, JING Y C, SONG A L, et al. The design of wire feeding mechanism for desktop 3D printer [P]. Proceedings of the 2018 8th International Conference on Applied Science, Engineering and Technology (ICASET 2018), 2018.
[9]   LI Z Y, ZHANG D W, SHAO L C, et al Experimental investigation using vibration testing method to optimize feed parameters of color mixing nozzle for fused deposition modeling color 3D printer[J]. Advances in Mechanical Engineering, 2019, 11 (12): 1- 12
[10]   PENG A H, WANG Z M Researches into influence of process parameters on FDM parts precision[J]. Applied Mechanics and Materials, 2010, 1021: 338- 343
[11]   RAO P, LIU J, ROBERSON D, et al Online real-time quality monitoring in additive manufacturing processes using heterogeneous sensors[J]. Journal of Manufacturing Science and Engineering, 2015, 137 (6): 1- 12
[12]   ARDI W, EKRAR W The implementation of fast fourier transform and coherence function to detect the millimetric hole on strip iron plate[J]. Key Engineering Materials, 2020, 5977: 430- 437
[13]   JAFARIAN K, MOBIN M, JAFARI-MARANDI R, et al Misfire and valve clearance faults detection in the combustion engines based on a multi-Sensor vibration signal monitoring[J]. Measurement, 2018, 128: 527- 536
doi: 10.1016/j.measurement.2018.04.062
[14]   杨毅明. 数字信号处理: 第2版[M]. 北京: 机械工业出版社, 2017: 69-77.
[15]   姜皓月, 王晟旻 基于Matlab的FFT算法研究[J]. 电子制作, 2020, (1): 52- 54
JIANG Hao-yue, WANG Sheng-min Research on FFT algorithm based on Matlab[J]. Pratical Eletronics, 2020, (1): 52- 54
doi: 10.3969/j.issn.1006-5059.2020.01.023
[16]   张浩. 基于HSMM和EEMD的熔融沉积成型3D打印过程故障诊断研究[D]. 杭州: 浙江大学, 2017.
ZHANG Hao. Research on fault diagnosis of fused deposition molding 3D printing process based on HSMM and EEMD [D]. Hangzhou: Zhejiang University, 2017.
[17]   LIAO T W, KUO R J Five discrete symbiotic organisms search algorithms for simultaneous optimization of feature subset and neighborhood size of KNN classification models[J]. Applied Soft Computing, 2018, 64: 581- 595
doi: 10.1016/j.asoc.2017.12.039
[18]   CHEN Y, YANG H Multiscale recurrence analysis of long-term nonlinear and nonstationary time series[J]. Chaos, Solitons and Fractals, 2012, 45 (7): 978- 987
doi: 10.1016/j.chaos.2012.03.013
[19]   李俏, 苏世杰, 陈赟 基于动态时空规整的系泊链闪光焊接在线质量评估[J]. 焊接学报, 2019, 40 (3): 52- 58
LI Qiao, SU Shi-jie, CHEN Yun, et al On-line quality evaluation of flash welding of mooring chain based on dynamic space-time regularization[J]. Transactions of the China Welding Institution, 2019, 40 (3): 52- 58
doi: 10.12073/j.hjxb.2019400071
[1] Bin LI,Jian-zhong FU. Solid modeling and slicing process of heterogeneous materials based on trivariate T-splines[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 135-144.
[2] Jun DU,Chen MA,Zheng-ying WEI. Dynamic response of surface morphology of aluminum (Al) deposited layers in wire and arc additive manufacturing based on visual sensing[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1481-1489.
[3] SHAO Hui-feng, HE Yong, FU Jian-zhong. Research advance of degradable artificial bone with additive manufacturing: customization from geometric shape to property[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(6): 1035-1057.
[4] DU Jun, WANG Xin, REN Chuan-qi, BAI Hao. Morphology analysis of thin-wallparts by metal fused-coating additive manufacturing[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(1): 24-28.
[5] WU Hai xi, YU Zhong hua,ZHANG Hao,YANG Zhen sheng, WANG Yan. Method for monitoring of FDM 3D printer failure based on acoustic emission[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(1): 78-84.