Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (6): 1035-1057    DOI: 10.3785/j.issn.1008-973X.2018.06.002
Computer and Communication Technolog     
Research advance of degradable artificial bone with additive manufacturing: customization from geometric shape to property
SHAO Hui-feng, HE Yong, FU Jian-zhong
Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
Download:   PDF(9274KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The demand for artificial bone is increasing rapidly with the bone defect caused by frequent trauma and tumor resection. Degradable artificial bones have received significant attention in the past several years. Review the background and development status of the bone repair materials, integrated with our team's researches in the past five years. Summarize the inorganic material (bioceramics) and the domestic and international manufacturing methods about the bone repair scaffold, especially the additive manufacturing (3D printing). Focus on the mechanical properties, osteogenic capacity, degradation properties and bioactivity of the 3D printed degradable artificial bone, and discuss in a forward-looking perspective for degradable artificial bone. At present, the customization of artificial bone has transformed from geometric shape to property; personalized customization of artificial bone will be the research hotspot in future.



Received: 21 September 2017      Published: 20 June 2018
CLC:  TH145  
Cite this article:

SHAO Hui-feng, HE Yong, FU Jian-zhong. Research advance of degradable artificial bone with additive manufacturing: customization from geometric shape to property. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(6): 1035-1057.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.06.002     OR     http://www.zjujournals.com/eng/Y2018/V52/I6/1035


增材制造可降解人工骨的研究进展——从外形定制到性能定制

频繁的创伤、肿瘤切除等引起的骨缺损导致人们对人工骨的需求大大增加,可降解人工骨越来越受到研究人员的重视.结合课题组在过去5年的研究,回顾骨修复材料的背景和发展现状,总结无机骨修复材料(生物活性陶瓷)和骨修复支架的制造方法,尤其是基于增材制造(3D打印)的方法.重点阐述3D打印可降解人工骨用于骨组织修复及再生在力学性能、成骨性能、降解性能和生物活性等几个方面的研究现状,并对可降解人工骨的未来发展方向作了展望.目前人工骨定制已经从简单的形状定制逐步过渡到骨性能定制,人工骨的个性化定制将是今后的研究重点.

[1] 奚廷斐. 我国生物医用材料现状和发展趋势[J]. 中国医疗器械信息, 2013, 12(8):1-5. XI Ting-fei. Status and development trends for biomedical materials[J]. China Medical Device Information, 2013, 12(8):1-5.
[2] 张镇, 王本力. 我国生物医用材料产业发展研究[J]. 新材料产业, 2015(3):2-5. ZHANG Zhen, WANG Ben-li. Research on the industrial development of biomedical materials[J]. Advanced Materials Industry, 2015(3):2-5.
[3] HENCH L L, POLAK J M. Third-generation biomedical materials[J]. Science, 2002, 295(5557):1014-1017.
[4] VORNDRAN E, MOSEKE C, GBURECK U. 3D printing of ceramic implants[J]. MRS Bulletin, 2015, 40(2):127-136.
[5] 生物医用材料深度研究报告[R]. 新材料在线,[2014-10-09]. https://wenku.baidu.com/view/78c5cd6b14791711cd791751.html.
[6] URIST M R, DOWELL T A, HAY P H, et al. Inductive substrates for bone formation[J]. Clinical Orthopaedics & Related Research, 1968, 59(7):59.
[7] ARRINGTON E D, SMITH W J, CHAMBERS H G, et al. Complications of iliac crest bone graft harvesting[J]. Clinical Orthopaedics & Related Research, 1996, 329(329):300-309.
[8] STEVENSON S, EMERY S E, GOLDBERG V M. Factors affecting bone graft incorporation[J]. Clinical Orthopaedics & Related Research, 1996, 324(324):66-74.
[9] ASSELMEIER M A, CASPARI R B, BOTTENFIELD S. A review of allograft processing and sterilization techniques and their role in transmission of the human immunodeficiency virus[J]. American Journal of Sports Medicine, 1993, 21(2):170-175.
[10] KAINER M A, LINDEN J V, WHALEY D N, et al. Infections associated with musculoskeletal-tissue allografts[J]. New England Journal of Medicine, 2004, 350(25):2564-2571.
[11] 张兴栋. 如何应对生物医用材料产业挑战[J]. 新材料产业, 2005(12):32-38. ZHANG Xing-dong. How to deal with the challenges of biomedical materials industry[J]. Advanced Materials Industry, 2015(12):32-38.
[12] LIU X, CHU P K, DING C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications[J]. Materials Science & Engineering R Reports, 2004, 47(3/4):49-121.
[13] SILVA P L, SANTOS J D, MONTEIRO F J, et al. Adhesion and microstructural characterization of plasma-sprayed hydroxyapatite/glass ceramic coatings onto Ti-6A1-4V substrates[J]. Surface & Coatings Technology, 1998, 102(3):191-196.
[14] HENCH L L. Bioceramics:from concept to clinic[J]. Journal of the American Ceramic Society, 2010, 74(74):1487-1510.
[15] ISHIKAWA J, TSUJI H, SATO H, et al. Ion implantation of negative ions for cell growth manipulation and nervous system repair[J]. Surface & Coatings Technology, 2007, 201(19-20):8083-8090.
[16] NEBE B, FINKE B, L THEN F, et al. Improved initial osteoblast functions on amino-functionalized titanium surfaces[J]. Biomolecular Engineering, 2007,24(5):447-454.
[17] KOKUBO T, TAKADAMA H. How useful is SBF in predicting in vivo bone bioactivity[J]. Biomaterials, 2006, 27(15):2907-2915.
[18] SALINAS A J, VALLET-REG M. Bioactive ceramics:from bone grafts to tissue engineering[J]. RSC Advances, 2013, 3(28):11116.
[19] HUANG T, RAHAMAN M, DOIPHODE N, et al. Porous and strong bioactive glass (13-93) scaffolds fabricated by freeze extrusion technique[J]. Materials Science and Engineering:C, 2011, 31(7):1482-1489.
[20] BOSE S, ROY M, BANDYOPADHYAY A. Recent advances in bone tissue engineering scaffolds[J]. Trends Biotechnol, 2012, 30(10):546-554.
[21] WIEDING J, WOLF A, BADER R. Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 37(37):56-68.
[22] OLSZTA M J, CHENG X, SANG S J, et al. Bone structure and formation:a new perspective[J]. Materials Science & Engineering R Reports, 2007, 58(3-5):77-116.
[23] WILLIAMS D F. On the mechanisms of biocompatibility[J]. Biomaterials, 2008, 29(20):2941-2953.
[24] LUO Y, ZHAI D, HUAN Z, et al. Three-dimensional printing of hollow-struts-packed bioceramic scaffolds for bone regeneration[J]. ACS Applied Materials & Interfaces, 2015, 7(43):24377-24383.
[25] KARAGEORGIOU V, KAPLAN D. Porosity of 3Dbiomaterial scaffolds and osteogenesis[J]. Biomaterials, 2005, 26(27):5474-5491.
[26] XIE J, SHAO H, HE D, et al. Ultrahigh strength of three-dimensional printed diluted magnesium dopingwollastonite porous scaffolds[J]. MRS Communications, 2015, 5(4):631-639.
[27] XU N, YE X, WEI D, et al. 3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair[J]. ACS Applied Materials & Interfaces, 2014, 6(17):14952-14963.
[28] WOODARD J R, HILLDORE A J, LAN S K, et al. The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity[J]. Biomaterials, 2007, 28(1):45-54.
[29] SALINAS A, ESBRIT P, VALLETREGI M. A tissue engineering approach based on the use of bioceramics for bone repair[J]. Biomaterials Science, 2012, 1(1):40-51.
[30] LU J, DESCAMPS M, DEJOU J, et al. The biodegradation mechanism of calcium phosphate biomaterials in bone[J]. Journal of Biomedical Materials Research, 2002, 63(4):408-412.
[31] NI S, LIN K, CHANG J, et al. Beta-CaSiO3/beta-Ca3(PO4)2 composite materials for hard tissue repair: in vitro studies[J]. Journal of Biomedical Materials Research Part A, 2008, 85(1):72-82.
[32] DOROZHKIN S V. A review on the dissolution models of calcium apatites[J]. Progress in Crystal Growth & Characterization of Materials, 2002, 44(1):45-61.
[33] RAPACZ-KMIT A, PASZKIEWICZ S. Mechanicalproperties of HAp-ZrO2 composites[J]. Journal of the European Ceramic Society, 2006, 26(8):1481-1488.
[34] CHEN Y, GAN C, ZHANG T, et al. Laser-surface-alloyed carbon nanotubes reinforced hydroxyapatite composite coatings[J]. Applied Physics Letters, 2005, 86(25):1905-1907.
[35] HUANG S, HUANG B, ZHOU K, et al. Effects of coatings on the mechanical properties of carbon fiber reinforced HAP composites[J]. Materials Letters, 2004, 58(27-28):3582-3585.
[36] LEE B T, KIM K H, YOUN H C. Functionally gradient and micro-channeled Al2O3-(t-ZrO2)/HAp composites[J]. Journal of the American Ceramic Society, 2007, 90(2):629-631.
[37] GEORGIOU G, KNOWLES J C. Glass reinforced hydroxyapatite for hard tissue surgery-part 1:Mechanical properties[J]. Biomaterials, 2001, 22(20):2811-2815.
[38] INAGAKI M, KAMEYAMA T. Phase transformation of plasma-sprayed hydroxyapatite coating with preferred crystalline orientation[J]. Biomaterials, 2007, 28(19):2923-2931.
[39] ZHANG F, CHANG J, LU J, et al. Bioinspired structure of bioceramics for bone regeneration in load-bearing sites[J]. Acta Biomaterialia, 2007, 3(6):896-904.
[40] HULBERT S F, HENCH L L, FORBERS D, et al. History of bioceramics[J]. Ceramics International, 1982, 8(4):131-140.
[41] FIELDING G A, SMOOT W, BOSE S. Effects of SiO2, SrO, MgO and ZnO dopants in TCP on osteoblastic Runx2 expression[J]. Journal of Biomedical Materials Research Part A, 2013, 102(7):2417-2426.
[42] KONDO N, OGOSE A, TOKUNAGA K, et al. Bone formation and resorption of highly purified β-tricalcium phosphate in the rat femoral condyle[J]. Biomaterials, 2005, 26(28):5600-5608.
[43] LE N D, DUVAL L, LECOMTE A, et al. Interactions of total bone marrow cells with increasing quantities of macroporous calcium phosphate ceramic granules[J]. Journal of Materials Science:Materials in Medicine, 2007, 18(10):1983-1990.
[44] CHO J S, YOU N K, KOO H Y, et al. Synthesis of nano-sized biphasic calcium phosphate ceramics with spherical shape by flame spray pyrolysis[J]. Journal of Materials Science:Materials in Medicine, 2010, 21(4):1143-1149.
[45] WU S C, HSU H C, HSU S K, et al. Preparation and characterization of four different compositions of calcium phosphate scaffolds for bone tissue engineering[J]. Materials Characterization, 2011, 62(5):526-534.
[46] YAMADA S, HEYMANN D, BOULER J M, et al.Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/beta-tricalcium phosphate ratios[J]. Biomaterials, 1997, 18(15):1037-1041.
[47] RYU H S, HONG K S, LEE J K, et al. Magnesia-doped HA/beta-TCP ceramics and evaluation of their biocompatibility[J]. Biomaterials, 2004, 25(3):393-401.
[48] ARINZEH T L, TRAN T, MCALARY J, et al. A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation[J]. Biomaterials, 2005, 26(17):3631-3638.
[49] LIM H C, SONG K H, YOU H, et al. Effectiveness of biphasic calcium phosphate block bone substitutes processed using a modified extrusion method in rabbit calvarial defects[J]. Journal of Periodontal & Implant Science, 2015, 45(2):46-55.
[50] LU J, BLARY M C, VAVASSEUR S, et al. Relationship between bioceramics sintering and micro-particles-induced cellular damages[J]. Journal of Materials Science:Materials in Medicine, 2004, 15(4):361-365.
[51] XYNOS I D, EDGAR A J, BUTTERY L D, et al. Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution[J]. Journal of Biomedical Materials Research, 2001, 55(2):151-157.
[52] MAENO S, NIKI Y, MATSUMOTO H, et al. The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture[J]. Biomaterials, 2005, 26(23):4847-4855.
[53] LAQUERRIERE P, JALLOT E, KILIAN L, et al. Effects of bioactive glass particles and their ionic products on intracellular concentrations[J]. Journal of Biomedical Materials Research Part A, 2003, 65(4):441-446.
[54] LIN H R, KUO C J, YANG C Y, et al. Preparation of macroporous biodegradable PLGA scaffolds for cell attachment with the use of mixed salts as porogen additives[J]. Journal of Biomedical Materials Research, 2002, 63(3):271-279.
[55] NAKAMURA T, YAMAMURO T, HIGASHI S, et al. A new glass-ceramic for bone replacement:evaluation of its bonding to bone tissue[J]. Journal of Biomedical Materials Research, 1985, 19(19):685-698.
[56] HENCH L L, PASCHALL H A. Direct chemical bond of bioactive glass-ceramic materials to bone and muscle[J]. Journal of Biomedical Materials Research, 1973, 7(3):25-42.
[57] OHURA K, NAKAMURA T, YAMAMURO T, et al. Bone-bonding ability of P2O5-Free CaO·SiO2 glasses[J]. Journal of Biomedical Materials Research, 2004, 25(3):357-365.
[58] SIRIPHANNON P, KAMESHIMA Y, YASUMORI A, et al. Influence of preparation conditions on the microstructure and bioactivity of α-CaSiO3 ceramics:Formation of hydroxyapatite in simulated body fluid[J]. Journal of Biomedical Materials Research Part B Applied Biomaterials, 2015, 52(1):30-39.
[59] ⅡMORI Y, KAMESHIMA Y, YASUMORI A, et al. Effect of solid/solution ratio on apatite formation from CaSiO3, ceramics in simulated body fluid[J]. Journal of Materials Science:Materials in Medicine, 2004, 15(11):1247-1253.
[60] LI X, CHANG J. Synthesis of wollastonite single crystal nanowires by a novel hydrothermal route[J]. Chemistry Letters, 2004, 33(11):1458-1459.
[61] LIN K, CHANG J, ZENG Y, et al. Preparation of macroporous calcium silicate ceramics[J]. Materials Letters, 2004, 58(15):2109-2113.
[62] LIU X, DING C, WANG Z. Apatite formed on thesurface of plasma-sprayed wollastonite coating immersed in simulated body fluid[J]. Biomaterials, 2001, 22(14):2007-2012.
[63] LIN K, LIU Y, HUANG H, et al. Degradation and silicon excretion of the calcium silicate bioactive ceramics during bone regeneration using rabbit femur defect model[J]. Journal of Materials Science:Materials in Medicine, 2015, 26(197):1-8.
[64] LIN K, ZHAI W, NI S, et al. Study of the mechanical property and in vitro biocompatibility of CaSiO3 ceramics[J]. Ceramics International, 2005, 31(2):323-326.
[65] NI S, JIANG C, CHOU L. A novel bioactive porous CaSiO3 scaffold for bone tissue engineering[J]. Journal of Biomedical Materials Research Part A, 2006, 76(1):196-205.
[66] XU S, LIN K, WANG Z, et al. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics[J]. Biomaterials, 2008, 29(17):2588-2596.
[67] ZHANG N, MOLENDA J A, FOURNELLE J H, et al. Effects of pseudowollastonite (CaSiO3) bioceramic on in vitro activity of human mesenchymal stem cells[J]. Biomaterials, 2010, 31(30):7653-7665.
[68] ZHU Y, ZHU M, HE X, et al. Substitutions of strontium in mesoporous calcium silicate and their physicochemical and biological properties[J]. Acta Biomaterialia, 2013, 9(5):6723-6731.
[69] GOU Z, CHANG J. Synthesis and in vitro bioactivity of dicalcium silicate powders[J]. Journal of the European Ceramic Society, 2004, 24(1):93-99.
[70] GOU Z, CHANG J, GAO J, et al. In vitro bioactivity and dissolution of Ca2(SiO3)(OH)2 and β-Ca2SiO4 fibers[J]. Journal of the European Ceramic Society, 2004, 24(13):3491-3497.
[71] GOU Z, CHANG J, ZHAI W. Preparation and characterization of novel bioactive dicalcium silicate ceramics[J]. Journal of the European Ceramic Society, 2005, 25(9):1507-1514.
[72] ZHAO W, WANG J, ZHAI W, et al. The self-setting properties and in vitro bioactivity of tricalcium silicate[J]. Biomaterials, 2005, 26(31):6113-6121.
[73] DE AZA P N, LUKLINSKA Z B, ANSEAU M. Bioactivity of diopside ceramic in human parotid saliva[J]. Journal of Biomedical Materials Research Part B Applied Biomaterials, 2005, 73(1):54-60.
[74] DIBA M, GOUDOURI O-M, TAPIA F, et al. Magnesium-containing bioactive polycrystalline silicate-based ceramics and glass-ceramics for biomedical applications[J]. Current Opinion in Solid State and Materials Science, 2014, 18(3):147-167.
[75] ZHAI W, LU H, WU C, et al. Stimulatory effects of the ionic products from Ca-Mg-Si bioceramics on both osteogenesis and angiogenesis in vitro[J]. Acta Biomaterialia, 2013, 9(8):8004-8014.
[76] WU C, ZREIQAT H. Porous bioactive diopside (CaMgSi2O6) ceramic microspheres for drug delivery[J]. Acta Biomaterialia, 2010, 6(3):820-829.
[77] WU C, CHANG J. Synthesis and in vitro bioactivity of bredigite powders[J]. Journal of Biomaterials Applications, 2007, 21(3):251-263.
[78] WU C, JIANG C. Degradation, bioactivity, and cytocompatibility of diopside, akermanite, and bredigite ceramics[J]. Journal of Biomedical Materials Research Part B Applied Biomaterials, 2007, 83(1):153-160.
[79] WU C, CHANG J, NI S, et al. In vitro bioactivity of akermanite ceramics[J]. Journal of Biomedical Materials Research Part A, 2006, 76(1):73-80.
[80] WU C, CHANG J, WANG J, et al. Preparation and characteristics of a calcium magnesium silicate (bredigite) bioactive ceramic[J]. Biomaterials, 2005, 26(16):2925-2931.
[81] YASZEMSKI M J, PAYNE R G, HAYES W C, et al. Evolution of bone transplantation:molecular, cellular and tissue strategies to engineer human bone[J]. Biomaterials, 1996, 17(2):175-185.
[82] SINGH L, KUMAR V, RATNER B. Generation of porous microcellular 85/15 poly (DL-lactide-co-glycolide) foams for biomedical applications[J]. Biomaterials, 2004, 25(13):2611-2617.
[83] LEE Y H, LEE J H, AN I G, et al. Electrospun dual-porosity structure and biodegradation morphology ofMontmorillonite reinforced PLLA nanocomposite scaffolds[J]. Biomaterials, 2005, 26(16):3165-3172.
[84] GROSS K A, RODR GUEZ-LORENZO L M.Biodegradable composite scaffolds with an interconnected spherical network for bone tissue engineering[J]. Biomaterials, 2004, 25(20):4955-4962.
[85] 林开利. 纳米磷酸钙、硅酸钙及其复合生物与环境材料的制备和性能研究[D]. 上海:华东师范大学, 2008. LIN Kai-li. Study on the preparation and properties of nano apatite, calcium silicate and their composite biomaterials and environmental materials[D]. Shanghai:East China Normal University, 2008..
[86] SHI M, ZHAI D, ZHAO L, et al. Nanosized mesoporous bioactive glass/poly(lactic-co-glycolic acid) composite-coated CaSiO3 scaffolds with multifunctionalproperties for bone tissue engineering[J]. Biomed Research International, 2014, 2014(2014):323046-323057.
[87] FAN H, TAO H, WU Y, et al. TGF-β3 immobilizedPLGA-gelatin/chondroitin sulfate/hyaluronic acid hybrid scaffold for cartilage regeneration[J]. Journal of Biomedical Materials Research Part A, 2010, 95(4):982-992.
[88] BANDYOPADHYAY A, BOSE S, DAS S. 3D printing of biomaterials[J]. MRS Bulletin, 2015, 40(2):108-115.
[89] COMPTON B G, LEWIS J A. 3D-printing of lightweight cellular composites[J]. Advanced Materials, 2014, 26(34):5930-5935.
[90] VISSER J, PETERS B, BURGER T J, et al. Biofabrication of multi-material anatomically shaped tissue constructs[J]. Biofabrication, 2013, 5(3):035007.
[91] GIANNITELLI S M, MOZETIC P, TROMBETTA M, et al. Combined additive manufacturing approaches in tissue engineering[J]. Acta Biomaterialia, 2015, 24:1-11.
[92] TRAVITZKY N, BONET A, DERMEIK B, et al. Additive manufacturing of ceramic-based materials[J]. Advanced Engineering Materials, 2014, 16(6):729-754.
[93] WILLIAMS J M, ADEWUNMI A, SCHEK R M, et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering[J]. Biomaterials, 2005, 26(23):4817-4827.
[94] GAO C, LIU T, SHUAI C, et al. Enhancement mechanisms of graphene in nano-58S bioactive glass scaffold:mechanical and biological performance[J]. Scientific Reports, 2014, 4:4712.
[95] FENG P, GAO C, SHUAI C, et al. Toughening and strengthening mechanisms of porous akermanite scaffolds reinforced with nano-titania[J]. RSC Advances, 2015, 5(5):3498-3507.
[96] SHUAI C, HAN Z, FENG P, et al. Akermanite scaffolds reinforced with boron nitride nanosheets in bone tissue engineering[J]. Journal of Materials Science:Materials in Medicine, 2015, 26(5):1-9.
[97] LIU J, HU H, LI P, et al. Fabrication and characterization of porous 45S5 glass scaffolds via direct selective laser sintering[J]. Advanced Manufacturing Processes, 2013, 28(6):610-615.
[98] LOWMUNKONG R, SOHMURA T, SUZUKI Y, et al. Fabrication of freeform bone-filling calcium phosphate ceramics by gypsum 3D printing method[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials, 2009, 90(2):531-539.
[99] FARZADI A, WARAN V, SOLATI-HASHJIN M, et al. Effect of layer printing delay on mechanical properties and dimensional accuracy of 3D printed porous prototypes in bone tissue engineering[J]. Ceramics International, 2015, 41(7):8320-8330.
[100] GBURECK U, H LZEL T, KLAMMERT U, et al. Resorbable dicalcium phosphate bone substitutes prepared by 3D powder printing[J]. Advanced Functional Materials, 2007, 17(18):3940-3945.
[101] CASTILHO M, RODRIGUES J, PIRES I, et al. Fabrication of individual alginate-TCP scaffolds for bone tissue engineering by means of powder printing[J]. Biofabrication, 2015, 7(1):015004.
[102] IRSEN S H, LEUKERS B, H CKLING C, et al. Bioceramic granulates for use in 3D printing:process engineering aspects[J]. Materialwissenschaft und Werkstofftechnik, 2006, 37(6):533-537.
[103] KLAMMERT U, GBURECK U, VORNDRAN E, et al. 3D powder printed calcium phosphate implants for reconstruction of cranial and maxillofacial defects[J]. Journal of Cranio-Maxillofacial Surgery, 2010, 38(8):565-570.
[104] ZOCCA A, GOMES C M, BERNARDO E, et al. LAS glass-ceramic scaffolds by three-dimensional printing[J]. Journal of the European Ceramic Society, 2013.
[105] RONCA A, AMBROSIO L, GRIJPMA D W. Preparation of designed poly(D,L-lactide)/nanosized hydroxyapatite composite structures by stereolithography[J]. Acta Biomaterialia, 2013, 9(4):5989-5996.
[106] FERLIN K M, PRENDERGAST M E, MILLER M L, et al. Influence of 3D printed porous architecture on mesenchymal stem cell enrichment and differentiation[J]. Acta Biomaterialia, 2016, 32:161-169.
[107] TESAVIBUL P, FELZMANN R, GRUBER S, et al. Processing of 45S5 Bioglass® by lithography-based additive manufacturing[J]. Materials Letters, 2012, 74:81-84.
[108] CASTLES F, ISAKOV D, LUI A, et al. Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites[J]. Scientific Reports, 2016, 6:22714.
[109] WU Y, ISAKOV D, GRANT P S. Fabrication of composite filaments with high dielectric permittivity for fused deposition 3D printing[J]. Materials, 2017, 10(10).
[110] BANDYOPADHYAY A, DAS K, MARUSICH J, et al. Application of fused deposition in controlled microstructure metal-ceramic composites[J]. Rapid Prototyping Journal, 2006, 12(3):121-128.
[111] LEWIS J A. Direct ink writing of 3D functional materials[J]. Advanced Functional Materials, 2006, 16(17):2193-2204.
[112] EQTESADI S, MOTEALLEH A, PAJARES A, et al. Influence of sintering temperature on the mechanical properties of ∈-PCL-impregnated 45S5 bioglass-derived scaffolds fabricated by robocasting[J]. Journal of the European Ceramic Society, 2015, 35(14):3985-3993.
[113] WU C, LUO Y, CUNIBERTI G, et al. Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability[J]. Acta Biomaterialia, 2011, 7(6):2644-2650.
[114] WU C, FAN W, ZHOU Y, et al. 3D-printing of highly uniform CaSiO3 ceramic scaffolds:preparation,characterization and in vivo osteogenesis[J]. Journal of Materials Chemistry, 2012, 22(24):12288-12295.
[115] EQTESADI S, MOTEALLEH A, MIRANDA P, et al. A simple recipe for direct writing complex 45S5 Bioglass® 3d scaffolds[J]. Materials Letters, 2012, 93:68-71.
[116] EQTESADI S, MOTEALLEH A, MIRANDA P, et al. Robocasting of 45S5 bioactive glass scaffolds for bone tissue engineering[J]. Journal of the European Ceramic Society, 2014, 34(1):107-118.
[117] FU Q, SAIZ E, TOMSIA A P. Bioinspired strong and highly porous glass scaffolds[J]. Advanced Functional Materials, 2011, 21(6):1058-1063.
[118] FU Q, SAIZ E, TOMSIA A P. Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration[J]. Acta biomaterialia, 2011, 7(10):3547-3554.
[119] MORISSETTE S L, LEWIS J A, CESARANO J, et al. Solid freeform fabrication of aqueous alumina-poly(vinyl alcohol) gelcasting suspensions[J]. Journal of the American Ceramic Society, 2010, 83(10):2409-2416.
[120] HE D, ZHUANG C, CHEN C, et al. Rational design and fabrication of porous calcium-magnesium silicate constructs that enhance angiogenesis and improve orbital implantation[J]. ACS Biomaterials Science & Engineering, 2016, 2(9):1519-1527.
[121] WANG X, ZHANG L, KE X, et al. 45S5 Bioglass analogue reinforced akermanite ceramic favorable for additive manufacturing mechanically strong scaffolds[J]. RSC Advances, 2015, 5(124):102727-102735.
[122] FU Q, SAIZ E, RAHAMAN M N, et al. Toward strong and tough glass and ceramic scaffolds for bone repair[J]. Advanced Functional Materials, 2013, 23(44):5461-5476.
[123] 吴成铁. Ca-Si-M系列硅酸盐生物陶瓷的制备及性能研究[D]. 上海:中国科学院上海硅酸盐研究所, 2006. WU Cheng-tie. Preparation and properties of bioactive Ca-Si-M silicate ceramics[D]. Shanghai:Shanghai Institue of Ceramics, Chinese Academy of Sciences, 2006.
[124] 吴成铁, 常江. 硅酸盐生物活性陶瓷用于骨组织修复及再生的研究[J]. 无机材料学报, 2013, 28(1):29-39. WU Cheng-tie, CHANG Jiang. Silicate bioceramics for bone tissue regeneration[J]. Journal of Inorganic Materials, 2013, 28(1):29-39.
[125] WU C, RAMASWAMY Y, BOUGHTON P, et al. Improvement of mechanical and biological properties of porous CaSiO3 scaffolds by poly(D,L-lactic acid) modification[J]. Acta Biomaterialia, 2008, 4(2):343-353.
[126] FENG P, WEI P, SHUAI C, et al. Characterization of mechanical and biological properties of 3-D scaffolds reinforced with zinc oxide for bone tissue engineering[J]. PloS one, 2014, 9(1):e87755.
[127] MEHRALI M, MOGHADDAM E, SEYED SHIRAZI S F, et al. Mechanical and in vitro biological performance of graphene nanoplatelets reinforced calcium silicate composite[J]. PLoS One, 2014, 9(9):e106802.
[128] XU S, YANG X, CHEN X, et al. Effect of borosilicate glass on the mechanical and biodegradation properties of 45S5-derived bioactive glass-ceramics[J]. Journal of Non-Crystalline Solids, 2014, 405:91-99.
[129] EQTESADI S, MOTEALLEH A, PAJARES A, et al. Improving mechanical properties of 13-93 bioactive glass robocast scaffold by poly (lactic acid) and poly (ε-caprolactone) melt infiltration[J]. Journal of Non-Crystalline Solids, 2016, 432:111-119.
[130] FIELDING G A, BANDYOPADHYAY A, BOSE S. Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds[J]. Dental Materials, 2012, 28(2):113-122.
[131] SHUAI C, GAO C, FENG P, et al. Graphene-reinforced mechanical properties of calcium silicate scaffolds by laser sintering[J]. RSC Advances, 2014,4(25):12782.
[132] HE D, ZHUANG C, XU S, et al. 3D printing of Mg-substituted wollastonite reinforcing diopside porous bioceramics with enhanced mechanical and biological performances[J]. Bioactive Materials, 2016,1(1):85-92.
[133] YANG G, YANG X, ZHANG L, et al. Counterionic biopolymers-reinforced bioactive glass scaffolds with improved mechanical properties in wet state[J]. Materials Letters, 2012, 75:80-83.
[134] PHILIPPART A, BOCCACCINI A R, FLECK C, et al. Toughening and functionalization of bioactive ceramic and glass bone scaffolds by biopolymer coatings and infiltration:a review of the last 5 years[J]. Expert Review of Medical Devices, 2015, 12(1):93-111.
[135] SHI M, ZHAI D, ZHAO L, et al. Nanosized mesoporous bioactive glass/poly(lactic-co-glycolic acid) composite-coated CaSiO3 scaffolds with multifunctional properties for bone tissue engineering[J]. Biomed Research International, 2014, 2014:323046.
[136] OSTROWSKA B, DI L A, MORONI L, et al. Influence of internal pore architecture on biological and mechanical properties of 3D fiber deposited scaffolds for bone regeneration[J]. Journal of Biomedical Materials Research Part A, 2016, 104(4):991-1001.
[137] VIVANCO J, AIYANGAR A, ARANEDA A, et al. Mechanical characterization of injection-molded macro porous bioceramic bone scaffolds[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 9(9):137-152.
[138] TARAFDER S, BALLA V K, DAVIES N M, et al. Microwave sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering[J]. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7(8):631-641.
[139] LIU D, ZHUANG J, SHUAI C, et al. Mechanical properties' improvement of a tricalcium phosphate scaffold with poly-l-lactic acid in selective laser sintering[J]. Biofabrication, 2013, 5(2):025005.
[140] MIRANDA P, SAIZ E, GRYN K, et al. Sintering and robocasting of β-tricalcium phosphate scaffolds for orthopaedic applications[J]. Acta Biomaterialia, 2006, 2(4):457-466.
[141] SHUAI C J, MAO Z Z, HAN Z K, et al. Preparation of complex porous scaffolds via selective laser sintering of poly(vinyl alcohol)/calcium silicate[J]. Journal of Bioactive and Compatible Polymers, 2014, 29(2):110-120.
[142] SHUAI C, MAO Z, HAN Z, et al. Fabrication and characterization of calcium silicate scaffolds for tissue engineering[J]. Journal of Mechanics in Medicine and Biology, 2014, 14(4):1450049.
[143] SHAO H, YANG X, HE Y, et al. Bioactive glass-reinforced bioceramic ink writing scaffolds:sintering, microstructure and mechanical behavior[J]. Biofabrication, 2015, 7(3):035010.
[144] ELSAYED H, COLOMBO P, BERNARDO E. Direct ink writing of wollastonite-diopside glass-ceramic scaffolds from a silicone resin and engineered fillers[J]. Journal of the European Ceramic Society, 2017, 37(13):4187-4195.
[145] HAN Z, FENG P, GAO C, et al. Microstructure, mechanical properties and in vitro bioactivity of akermanite scaffolds fabricated by laser sintering[J]. Bio-medical materials and engineering, 2014, 24(24):2073-2080.
[146] FENG P, GAO C, SHUAI C, et al. Liquid phase sintered ceramic bone scaffolds by combined laser and furnace nano-titania[J]. RSC Advances, 2015, 5(5):3498-3507.
[147] FENG P, NIU M, GAO C, et al. A novel two-step sintering for nano-hydroxyapatite scaffolds for bone tissue engineering[J]. Scientific Reports, 2014, 4:5599.
[148] KOLAN K C, LEU M C, HILMAS G E, et al. Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering[J]. Biofabrication, 2011, 3(2):025004.
[149] LIU X, RAHAMAN M N, HILMAS G E, et al. Mechanical properties of bioactive glass (13-93) scaffolds fabricated by robotic deposition for structural bone repair[J]. Acta Biomaterialia, 2013, 9(6):7025-7034.
[150] DELIORMANLI A M, RAHAMAN M N. Direct-write assembly of silicate and borate bioactive glass scaffolds for bone repair[J]. Journal of the European Ceramic Society, 2012, 32(14):3637-3646.
[151] SHAO H, HE Y, FU J, et al. 3D printing magnesium-doped wollastonite/β-TCP bioceramics scaffolds with high strength and adjustable degradation[J]. Journal of the European Ceramic Society, 2016, 36(6):1495-1503.
[152] CHANG B S, LEE C K, HONG K S, et al. Osteoconduction at porous hydroxyapatite with various pore configurations[J]. Biomaterials, 2000, 21(12):1291-1298.
[153] FENG B, JINKANG Z, ZHEN W, et al. The effect of pore size on tissue ingrowth and neovascularization in porous bioceramics of controlled architecture in vivo[J]. Biomedical Materials, 2011, 6(1):015007.
[154] LU J X, FLAUTRE B, ANSELME K, et al. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo[J]. Journal of Materials Science:Materials in Medicine, 1999, 10(2):111-120.
[155] OTSUKI B, TAKEMOTO M, FUJIBAYASHI S, et al. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants:three-dimensional micro-CT based structural analyses of porous bioactive titanium implants[J]. Biomaterials, 2006, 27(35):5892-5900.
[156] MANKANI M H, KUZNETSOV S A, FOWLER B, et al. In vivo bone formation by human bone marrow stromal cells:Effect of carrier particle size and shape[J]. Biotechnology & Bioengineering, 2001, 72(1):96-107.
[157] ZADPOOR A A. Bone tissue regeneration:the role of scaffold geometry[J]. Biomaterials Science, 2015, 3(2):231-245.
[158] GAUTHIER O, BOULER J M, AGUADO E, et al. Macroporous biphasic calcium phosphate ceramics:influence of macropore diameter and macroporosity percentage on bone ingrowth[J]. Biomaterials, 1998, 19(1-3):133-139.
[159] LIU X, RAHAMAN M N, FU Q. Bone regeneration in strong porous bioactive glass (13-93) scaffolds with an oriented microstructure implanted in rat calvarial defects[J]. Acta Biomaterialia, 2013, 9(1):4889-4898.
[160] FENG Y F, WANG L, LI X, et al. Influence of architecture of beta-tricalcium phosphate scaffolds on biological performance in repairing segmental bone defects[J]. PLoS One, 2012, 7(11):e49955.
[161] THIAN E S, AHMAD J H. Influence of nanohydro-xyapatite patterns deposited by electrohydrodynamic spraying on osteoblast response[J]. Journal of Biomedical Materials Research Part A, 2008, 85A(1):188-194.
[162] 朱美忠, 李晓斌, 陈滔. 纳米羟基磷灰石/聚酰胺66复合生物活性人工骨在肢体骨缺损应用87例[J]. 创伤外科杂志, 2014, 16(1):29-31. ZHU Mei-zhong, LI Xiao-bin, CHEN Tao. Curative effect of bioactive artifical bone by nano-hydroxyapatite/polyamide66 in treating limb bone defect in 87 cases[J]. Journal of Traumatic Surgery, 2014, 16(1):29-31.
[163] TEIXEIRA S, FERNANDES H, LEUSINK A, et al. In vivo evaluation of highly macroporous ceramic scaffolds for bone tissue engineering[J]. Journal of Biomedical Materials Research Part A, 2010, 93(2):567-575.
[164] ZHANG J, ZHOU H, YANG K, et al. RhBMP-2-loaded calcium silicate/calcium phosphate cement scaffold with hierarchically porous structure for enhanced bone tissue regeneration[J]. Biomaterials, 2013, 34(37):9381-9392.
[165] TARAFDER S, DAVIES N M, BANDYOPADHYAY A, et al. 3D printed tricalcium phosphate scaffolds:Effect of SrO and MgO doping on osteogenesis in a rat distal femoral defect model[J]. Biomaterials Science, 2013, 1(12):1250-1259.
[166] WANG X, WU X, XING H, et al. Porous nanohydroxyapatite/collagen scaffolds loading Insulin PLGA particles for restoration of critical size bone defect[J]. ACS Applied Materials & Interfaces, 2017, 9(13):11380-11391.
[167] HU Y, WANG J, XING W, et al. Surface-modified pliable PDLLA/PCL/β-TCP scaffolds as a promising delivery system for bone regeneration[J]. Journal of Applied Polymer Science, 2014, 131(20):40951.
[168] ZHANG Y, XIA L, ZHAI D, et al. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis[J]. Nanoscale, 2015, 7(45):19207-19221.
[169] LIU X, RAHAMAN M N, LIU Y, et al. Enhanced bone regeneration in rat calvarial defects implanted with surface-modified and BMP-loaded bioactive glass (13-93) scaffolds[J]. Acta Biomaterialia, 2013, 9(7):7506-7517.
[170] WANG C, LIN K, CHANG J, et al. Osteogenesis and angiogenesis induced by porous beta-CaSiO3/PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways[J]. Biomaterials, 2013, 34(1):64-77.
[171] WANG Q, XIA Q, WU Y, et al. 3D-printed atsttrin-incorporated alginate/hydroxyapatite scaffold promotes bone defect regeneration with TNF/TNFR signaling involvement[J]. Advanced Healthcare Materials, 2015, 4(11):1701-1708.
[172] ZHANG J, LIU X, LI H, et al. Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway[J]. Stem Cell Research & Therapy, 2016, 7(1):136.
[173] HAO S, MENG J, ZHANG Y, et al. Macrophage phenotypic mechanomodulation of enhancing bone regeneration by superparamagnetic scaffold upon magnetization[J]. Biomaterials, 2017, 140:16-25.
[174] LIU A, SUN M, YANG X, et al. Three-dimensional printing akermanite porous scaffolds for load-bearing bone defect repair:an investigation of osteogenic capability and mechanical evolution[J]. Journal of Biomaterials Applications, 2016, 31(5):650.
[175] CARLISLE E M. Silicon:a possible factor in bone calcification[J]. Science, 1970, 167(167):279-280.
[176] HOPPE A, G LDAL N S, BOCCACCINI A R. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics[J]. Biomaterials, 2011, 32(11):2757-2774.
[177] WU C, ZHOU Y, XU M, et al. Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity[J]. Biomaterials, 2013, 34(2):422-433.
[178] MA B, LI X, ZHANG Q, et al. Metabonomic profiling in studying anti-osteoporosis effects of strontium fructose 1,6-diphosphate on estrogen deficiency-induced osteoporosis in rats by GC/TOF-MS[J]. European Journal of Pharmacology, 2013, 718(1-3):524-532.
[179] WU C, RAMASWAMY Y, KWIK D, et al. The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties[J]. Biomaterials, 2007, 28(21):3171-3181.
[180] OSTROWSKI N, LEE B, HONG D, et al. Synthesis, osteoblast, and osteoclast viability of amorphous and crystalline tri-magnesium phosphate[J]. ACS Biomaterials Science & Engineering, 2015, 1(1):52-63.
[181] DIBA M, TAPIA F, BOCCACCINI A R, et al. Magnesium-containing bioactive glasses for biomedical applications[J]. International Journal of Applied Glass Science, 2012, 3(3):221-253.
[182] TAO Z S, ZHOU W S, HE X W, et al. A comparative study of zinc, magnesium, strontium-incorporated hydroxyapatite-coated titanium implants for osseointegration of osteopenic rats[J]. Materials Science & Engineering C Materials for Biological Applications, 2016, 62:226-232.
[183] MAO L, XIA L, CHANG J, et al. The synergistic effects of Sr and Si bioactive ions on osteogenesis, osteoclastogenesis and angiogenesis for osteoporotic bone regeneration[J]. Acta Biomaterialia, 2017, 61:217-232.
[184] WU C, CHEN Z, YI D, et al. Multidirectional effects of Sr-, Mg-, and Si-containing bioceramic coatings with high bonding strength on inflammation, osteoclastogenesis, and osteogenesis[J]. ACS applied materials & interfaces, 2014, 6(6):4264-4276.
[185] DENG C, YAO Q, FENG C, et al. 3D printing of bilineage constructive biomaterials for bone and cartilage regeneration[J]. Advanced Functional Materials, 2017, 27(36):1703117.
[186] MAGGI A, LI H, GREER J R. Three-dimensional nano-architected scaffolds with tunable stiffness for efficient bone tissue growth[J]. Acta Biomaterialia, 2017, 63:294-305.
[187] FAHIMIPOUR F, RASOULIANBOROUJENI M, DASHTIMOGHADAM E, et al. 3D printed TCP-based scaffold incorporating VEGF-loaded PLGA microspheres for craniofacial tissue engineering[J]. Dental Materials, 2017, 33(11):1205-1216.
[188] LEE J, YUN H S. Effect of hydroxyapatite-containing microspheres embedded into three-dimensional magnesium phosphate scaffolds on the controlled release of lysozyme and in vitro biodegradation[J]. International Journal of Nanomedicine, 2014, 9(31):4177-4189.
[189] YEO M, SIMON C G, KIM G. Effects of offset values of solid freeform fabricated PCL-β-TCP scaffolds on mechanical properties and cellular activities in bone tissue regeneration[J]. Journal of Materials Chemistry, 2012, 22(40):21636-21646.
[190] MA H, LUO J, SUN Z, et al. 3D printing of biomaterials with mussel-inspired nanostructures for tumor therapy and tissue regeneration[J]. Biomaterials, 2016, 111:138-148.
[191] ZHANG Y, ZHAI D, XU M, et al. 3D-printed bioceramic scaffolds with antibacterial and osteogenic activity[J]. Biofabrication, 2017, 9(2):025037.
[192] VARGAS-ALFREDO N, DORRONSORO A, CORTAJARENA A L, et al. Antimicrobial 3D porous scaffolds prepared by additive manufacturing and breath figures[J]. ACS Applied Materials & Interfaces, 2017, 9(42):37454-37462.
[193] YANG C, WANG X, MA B, et al. 3D-printed bioactive Ca3SiO5 bone cement scaffolds with nano surface structure for bone regeneration[J]. ACS Applied Materials & Interfaces, 2017, 9(7):5757-5767.
[194] ZHU M, LI K, ZHU Y, et al. 3D-printed hierarchical scaffold for localized isoniazid/rifampin drug delivery and osteoarticular tuberculosis therapy[J]. Acta Biomaterialia, 2015, 16(1):145-155.
[195] JAKUS A, RUTZ A, JORDAN S, et al. Hyperelastic "bone":a highly versatile, growth factor-free, osteoregenerative, scalable, and surgically friendly biomaterial[J]. Science Translational Medicine, 2016, 8(358):358ra127-358ra127.
[196] XIE J, YANG X, SHAO H, et al. Simultaneous mechanical property and biodegradation improvement of wollastonite bioceramic through magnesium dilute doping[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 54:60-71.
[197] SUN M, LIU A, SHAO H, et al. Systematical evaluation of mechanically strong 3D printed diluted magnesium doping wollastonite scaffolds on osteogenic capacity in rabbit calvarial defects[J]. Scientific Reports, 2016, 6:34029.
[198] LIU A, SUN M, SHAO H, et al. The outstanding mechanical response and bone regeneration capacity of robocast dilute magnesium-doped wollastonite scaffolds in critical size bone defects[J]. Journal of Materials Chemistry B, 2016, 4(22):3945-3958.
[199] SHAO H, KE X, LIU A, et al. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect[J]. Biofabrication, 2017, 9(2):025003.
[200] SHAO H, LIU A, KE X, et al. 3D robocasting magnesium-doped wollastonite/TCP bioceramic scaffolds with improved bone regeneration capacity in critical sized calvarial defects[J]. Journal of Materials Chemistry B, 2017, 5:2941-2951.
[201] 邵惠锋. 3D打印活性陶瓷骨修复支架研究[D]. 杭州:浙江大学, 2017. SHAO Hui-feng. Research on 3D printed bioactive ceramic bone repair scaffold[D]. Hangzhou:Zhejiang University, 2017.

No related articles found!