[1] 奚廷斐. 我国生物医用材料现状和发展趋势[J]. 中国医疗器械信息, 2013, 12(8):1-5. XI Ting-fei. Status and development trends for biomedical materials[J]. China Medical Device Information, 2013, 12(8):1-5.
[2] 张镇, 王本力. 我国生物医用材料产业发展研究[J]. 新材料产业, 2015(3):2-5. ZHANG Zhen, WANG Ben-li. Research on the industrial development of biomedical materials[J]. Advanced Materials Industry, 2015(3):2-5.
[3] HENCH L L, POLAK J M. Third-generation biomedical materials[J]. Science, 2002, 295(5557):1014-1017.
[4] VORNDRAN E, MOSEKE C, GBURECK U. 3D printing of ceramic implants[J]. MRS Bulletin, 2015, 40(2):127-136.
[5] 生物医用材料深度研究报告[R]. 新材料在线,[2014-10-09]. https://wenku.baidu.com/view/78c5cd6b14791711cd791751.html.
[6] URIST M R, DOWELL T A, HAY P H, et al. Inductive substrates for bone formation[J]. Clinical Orthopaedics & Related Research, 1968, 59(7):59.
[7] ARRINGTON E D, SMITH W J, CHAMBERS H G, et al. Complications of iliac crest bone graft harvesting[J]. Clinical Orthopaedics & Related Research, 1996, 329(329):300-309.
[8] STEVENSON S, EMERY S E, GOLDBERG V M. Factors affecting bone graft incorporation[J]. Clinical Orthopaedics & Related Research, 1996, 324(324):66-74.
[9] ASSELMEIER M A, CASPARI R B, BOTTENFIELD S. A review of allograft processing and sterilization techniques and their role in transmission of the human immunodeficiency virus[J]. American Journal of Sports Medicine, 1993, 21(2):170-175.
[10] KAINER M A, LINDEN J V, WHALEY D N, et al. Infections associated with musculoskeletal-tissue allografts[J]. New England Journal of Medicine, 2004, 350(25):2564-2571.
[11] 张兴栋. 如何应对生物医用材料产业挑战[J]. 新材料产业, 2005(12):32-38. ZHANG Xing-dong. How to deal with the challenges of biomedical materials industry[J]. Advanced Materials Industry, 2015(12):32-38.
[12] LIU X, CHU P K, DING C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications[J]. Materials Science & Engineering R Reports, 2004, 47(3/4):49-121.
[13] SILVA P L, SANTOS J D, MONTEIRO F J, et al. Adhesion and microstructural characterization of plasma-sprayed hydroxyapatite/glass ceramic coatings onto Ti-6A1-4V substrates[J]. Surface & Coatings Technology, 1998, 102(3):191-196.
[14] HENCH L L. Bioceramics:from concept to clinic[J]. Journal of the American Ceramic Society, 2010, 74(74):1487-1510.
[15] ISHIKAWA J, TSUJI H, SATO H, et al. Ion implantation of negative ions for cell growth manipulation and nervous system repair[J]. Surface & Coatings Technology, 2007, 201(19-20):8083-8090.
[16] NEBE B, FINKE B, L THEN F, et al. Improved initial osteoblast functions on amino-functionalized titanium surfaces[J]. Biomolecular Engineering, 2007,24(5):447-454.
[17] KOKUBO T, TAKADAMA H. How useful is SBF in predicting in vivo bone bioactivity[J]. Biomaterials, 2006, 27(15):2907-2915.
[18] SALINAS A J, VALLET-REG M. Bioactive ceramics:from bone grafts to tissue engineering[J]. RSC Advances, 2013, 3(28):11116.
[19] HUANG T, RAHAMAN M, DOIPHODE N, et al. Porous and strong bioactive glass (13-93) scaffolds fabricated by freeze extrusion technique[J]. Materials Science and Engineering:C, 2011, 31(7):1482-1489.
[20] BOSE S, ROY M, BANDYOPADHYAY A. Recent advances in bone tissue engineering scaffolds[J]. Trends Biotechnol, 2012, 30(10):546-554.
[21] WIEDING J, WOLF A, BADER R. Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 37(37):56-68.
[22] OLSZTA M J, CHENG X, SANG S J, et al. Bone structure and formation:a new perspective[J]. Materials Science & Engineering R Reports, 2007, 58(3-5):77-116.
[23] WILLIAMS D F. On the mechanisms of biocompatibility[J]. Biomaterials, 2008, 29(20):2941-2953.
[24] LUO Y, ZHAI D, HUAN Z, et al. Three-dimensional printing of hollow-struts-packed bioceramic scaffolds for bone regeneration[J]. ACS Applied Materials & Interfaces, 2015, 7(43):24377-24383.
[25] KARAGEORGIOU V, KAPLAN D. Porosity of 3Dbiomaterial scaffolds and osteogenesis[J]. Biomaterials, 2005, 26(27):5474-5491.
[26] XIE J, SHAO H, HE D, et al. Ultrahigh strength of three-dimensional printed diluted magnesium dopingwollastonite porous scaffolds[J]. MRS Communications, 2015, 5(4):631-639.
[27] XU N, YE X, WEI D, et al. 3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair[J]. ACS Applied Materials & Interfaces, 2014, 6(17):14952-14963.
[28] WOODARD J R, HILLDORE A J, LAN S K, et al. The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity[J]. Biomaterials, 2007, 28(1):45-54.
[29] SALINAS A, ESBRIT P, VALLETREGI M. A tissue engineering approach based on the use of bioceramics for bone repair[J]. Biomaterials Science, 2012, 1(1):40-51.
[30] LU J, DESCAMPS M, DEJOU J, et al. The biodegradation mechanism of calcium phosphate biomaterials in bone[J]. Journal of Biomedical Materials Research, 2002, 63(4):408-412.
[31] NI S, LIN K, CHANG J, et al. Beta-CaSiO3/beta-Ca3(PO4)2 composite materials for hard tissue repair: in vitro studies[J]. Journal of Biomedical Materials Research Part A, 2008, 85(1):72-82.
[32] DOROZHKIN S V. A review on the dissolution models of calcium apatites[J]. Progress in Crystal Growth & Characterization of Materials, 2002, 44(1):45-61.
[33] RAPACZ-KMIT A, PASZKIEWICZ S. Mechanicalproperties of HAp-ZrO2 composites[J]. Journal of the European Ceramic Society, 2006, 26(8):1481-1488.
[34] CHEN Y, GAN C, ZHANG T, et al. Laser-surface-alloyed carbon nanotubes reinforced hydroxyapatite composite coatings[J]. Applied Physics Letters, 2005, 86(25):1905-1907.
[35] HUANG S, HUANG B, ZHOU K, et al. Effects of coatings on the mechanical properties of carbon fiber reinforced HAP composites[J]. Materials Letters, 2004, 58(27-28):3582-3585.
[36] LEE B T, KIM K H, YOUN H C. Functionally gradient and micro-channeled Al2O3-(t-ZrO2)/HAp composites[J]. Journal of the American Ceramic Society, 2007, 90(2):629-631.
[37] GEORGIOU G, KNOWLES J C. Glass reinforced hydroxyapatite for hard tissue surgery-part 1:Mechanical properties[J]. Biomaterials, 2001, 22(20):2811-2815.
[38] INAGAKI M, KAMEYAMA T. Phase transformation of plasma-sprayed hydroxyapatite coating with preferred crystalline orientation[J]. Biomaterials, 2007, 28(19):2923-2931.
[39] ZHANG F, CHANG J, LU J, et al. Bioinspired structure of bioceramics for bone regeneration in load-bearing sites[J]. Acta Biomaterialia, 2007, 3(6):896-904.
[40] HULBERT S F, HENCH L L, FORBERS D, et al. History of bioceramics[J]. Ceramics International, 1982, 8(4):131-140.
[41] FIELDING G A, SMOOT W, BOSE S. Effects of SiO2, SrO, MgO and ZnO dopants in TCP on osteoblastic Runx2 expression[J]. Journal of Biomedical Materials Research Part A, 2013, 102(7):2417-2426.
[42] KONDO N, OGOSE A, TOKUNAGA K, et al. Bone formation and resorption of highly purified β-tricalcium phosphate in the rat femoral condyle[J]. Biomaterials, 2005, 26(28):5600-5608.
[43] LE N D, DUVAL L, LECOMTE A, et al. Interactions of total bone marrow cells with increasing quantities of macroporous calcium phosphate ceramic granules[J]. Journal of Materials Science:Materials in Medicine, 2007, 18(10):1983-1990.
[44] CHO J S, YOU N K, KOO H Y, et al. Synthesis of nano-sized biphasic calcium phosphate ceramics with spherical shape by flame spray pyrolysis[J]. Journal of Materials Science:Materials in Medicine, 2010, 21(4):1143-1149.
[45] WU S C, HSU H C, HSU S K, et al. Preparation and characterization of four different compositions of calcium phosphate scaffolds for bone tissue engineering[J]. Materials Characterization, 2011, 62(5):526-534.
[46] YAMADA S, HEYMANN D, BOULER J M, et al.Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/beta-tricalcium phosphate ratios[J]. Biomaterials, 1997, 18(15):1037-1041.
[47] RYU H S, HONG K S, LEE J K, et al. Magnesia-doped HA/beta-TCP ceramics and evaluation of their biocompatibility[J]. Biomaterials, 2004, 25(3):393-401.
[48] ARINZEH T L, TRAN T, MCALARY J, et al. A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation[J]. Biomaterials, 2005, 26(17):3631-3638.
[49] LIM H C, SONG K H, YOU H, et al. Effectiveness of biphasic calcium phosphate block bone substitutes processed using a modified extrusion method in rabbit calvarial defects[J]. Journal of Periodontal & Implant Science, 2015, 45(2):46-55.
[50] LU J, BLARY M C, VAVASSEUR S, et al. Relationship between bioceramics sintering and micro-particles-induced cellular damages[J]. Journal of Materials Science:Materials in Medicine, 2004, 15(4):361-365.
[51] XYNOS I D, EDGAR A J, BUTTERY L D, et al. Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution[J]. Journal of Biomedical Materials Research, 2001, 55(2):151-157.
[52] MAENO S, NIKI Y, MATSUMOTO H, et al. The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture[J]. Biomaterials, 2005, 26(23):4847-4855.
[53] LAQUERRIERE P, JALLOT E, KILIAN L, et al. Effects of bioactive glass particles and their ionic products on intracellular concentrations[J]. Journal of Biomedical Materials Research Part A, 2003, 65(4):441-446.
[54] LIN H R, KUO C J, YANG C Y, et al. Preparation of macroporous biodegradable PLGA scaffolds for cell attachment with the use of mixed salts as porogen additives[J]. Journal of Biomedical Materials Research, 2002, 63(3):271-279.
[55] NAKAMURA T, YAMAMURO T, HIGASHI S, et al. A new glass-ceramic for bone replacement:evaluation of its bonding to bone tissue[J]. Journal of Biomedical Materials Research, 1985, 19(19):685-698.
[56] HENCH L L, PASCHALL H A. Direct chemical bond of bioactive glass-ceramic materials to bone and muscle[J]. Journal of Biomedical Materials Research, 1973, 7(3):25-42.
[57] OHURA K, NAKAMURA T, YAMAMURO T, et al. Bone-bonding ability of P2O5-Free CaO·SiO2 glasses[J]. Journal of Biomedical Materials Research, 2004, 25(3):357-365.
[58] SIRIPHANNON P, KAMESHIMA Y, YASUMORI A, et al. Influence of preparation conditions on the microstructure and bioactivity of α-CaSiO3 ceramics:Formation of hydroxyapatite in simulated body fluid[J]. Journal of Biomedical Materials Research Part B Applied Biomaterials, 2015, 52(1):30-39.
[59] ⅡMORI Y, KAMESHIMA Y, YASUMORI A, et al. Effect of solid/solution ratio on apatite formation from CaSiO3, ceramics in simulated body fluid[J]. Journal of Materials Science:Materials in Medicine, 2004, 15(11):1247-1253.
[60] LI X, CHANG J. Synthesis of wollastonite single crystal nanowires by a novel hydrothermal route[J]. Chemistry Letters, 2004, 33(11):1458-1459.
[61] LIN K, CHANG J, ZENG Y, et al. Preparation of macroporous calcium silicate ceramics[J]. Materials Letters, 2004, 58(15):2109-2113.
[62] LIU X, DING C, WANG Z. Apatite formed on thesurface of plasma-sprayed wollastonite coating immersed in simulated body fluid[J]. Biomaterials, 2001, 22(14):2007-2012.
[63] LIN K, LIU Y, HUANG H, et al. Degradation and silicon excretion of the calcium silicate bioactive ceramics during bone regeneration using rabbit femur defect model[J]. Journal of Materials Science:Materials in Medicine, 2015, 26(197):1-8.
[64] LIN K, ZHAI W, NI S, et al. Study of the mechanical property and in vitro biocompatibility of CaSiO3 ceramics[J]. Ceramics International, 2005, 31(2):323-326.
[65] NI S, JIANG C, CHOU L. A novel bioactive porous CaSiO3 scaffold for bone tissue engineering[J]. Journal of Biomedical Materials Research Part A, 2006, 76(1):196-205.
[66] XU S, LIN K, WANG Z, et al. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics[J]. Biomaterials, 2008, 29(17):2588-2596.
[67] ZHANG N, MOLENDA J A, FOURNELLE J H, et al. Effects of pseudowollastonite (CaSiO3) bioceramic on in vitro activity of human mesenchymal stem cells[J]. Biomaterials, 2010, 31(30):7653-7665.
[68] ZHU Y, ZHU M, HE X, et al. Substitutions of strontium in mesoporous calcium silicate and their physicochemical and biological properties[J]. Acta Biomaterialia, 2013, 9(5):6723-6731.
[69] GOU Z, CHANG J. Synthesis and in vitro bioactivity of dicalcium silicate powders[J]. Journal of the European Ceramic Society, 2004, 24(1):93-99.
[70] GOU Z, CHANG J, GAO J, et al. In vitro bioactivity and dissolution of Ca2(SiO3)(OH)2 and β-Ca2SiO4 fibers[J]. Journal of the European Ceramic Society, 2004, 24(13):3491-3497.
[71] GOU Z, CHANG J, ZHAI W. Preparation and characterization of novel bioactive dicalcium silicate ceramics[J]. Journal of the European Ceramic Society, 2005, 25(9):1507-1514.
[72] ZHAO W, WANG J, ZHAI W, et al. The self-setting properties and in vitro bioactivity of tricalcium silicate[J]. Biomaterials, 2005, 26(31):6113-6121.
[73] DE AZA P N, LUKLINSKA Z B, ANSEAU M. Bioactivity of diopside ceramic in human parotid saliva[J]. Journal of Biomedical Materials Research Part B Applied Biomaterials, 2005, 73(1):54-60.
[74] DIBA M, GOUDOURI O-M, TAPIA F, et al. Magnesium-containing bioactive polycrystalline silicate-based ceramics and glass-ceramics for biomedical applications[J]. Current Opinion in Solid State and Materials Science, 2014, 18(3):147-167.
[75] ZHAI W, LU H, WU C, et al. Stimulatory effects of the ionic products from Ca-Mg-Si bioceramics on both osteogenesis and angiogenesis in vitro[J]. Acta Biomaterialia, 2013, 9(8):8004-8014.
[76] WU C, ZREIQAT H. Porous bioactive diopside (CaMgSi2O6) ceramic microspheres for drug delivery[J]. Acta Biomaterialia, 2010, 6(3):820-829.
[77] WU C, CHANG J. Synthesis and in vitro bioactivity of bredigite powders[J]. Journal of Biomaterials Applications, 2007, 21(3):251-263.
[78] WU C, JIANG C. Degradation, bioactivity, and cytocompatibility of diopside, akermanite, and bredigite ceramics[J]. Journal of Biomedical Materials Research Part B Applied Biomaterials, 2007, 83(1):153-160.
[79] WU C, CHANG J, NI S, et al. In vitro bioactivity of akermanite ceramics[J]. Journal of Biomedical Materials Research Part A, 2006, 76(1):73-80.
[80] WU C, CHANG J, WANG J, et al. Preparation and characteristics of a calcium magnesium silicate (bredigite) bioactive ceramic[J]. Biomaterials, 2005, 26(16):2925-2931.
[81] YASZEMSKI M J, PAYNE R G, HAYES W C, et al. Evolution of bone transplantation:molecular, cellular and tissue strategies to engineer human bone[J]. Biomaterials, 1996, 17(2):175-185.
[82] SINGH L, KUMAR V, RATNER B. Generation of porous microcellular 85/15 poly (DL-lactide-co-glycolide) foams for biomedical applications[J]. Biomaterials, 2004, 25(13):2611-2617.
[83] LEE Y H, LEE J H, AN I G, et al. Electrospun dual-porosity structure and biodegradation morphology ofMontmorillonite reinforced PLLA nanocomposite scaffolds[J]. Biomaterials, 2005, 26(16):3165-3172.
[84] GROSS K A, RODR GUEZ-LORENZO L M.Biodegradable composite scaffolds with an interconnected spherical network for bone tissue engineering[J]. Biomaterials, 2004, 25(20):4955-4962.
[85] 林开利. 纳米磷酸钙、硅酸钙及其复合生物与环境材料的制备和性能研究[D]. 上海:华东师范大学, 2008. LIN Kai-li. Study on the preparation and properties of nano apatite, calcium silicate and their composite biomaterials and environmental materials[D]. Shanghai:East China Normal University, 2008..
[86] SHI M, ZHAI D, ZHAO L, et al. Nanosized mesoporous bioactive glass/poly(lactic-co-glycolic acid) composite-coated CaSiO3 scaffolds with multifunctionalproperties for bone tissue engineering[J]. Biomed Research International, 2014, 2014(2014):323046-323057.
[87] FAN H, TAO H, WU Y, et al. TGF-β3 immobilizedPLGA-gelatin/chondroitin sulfate/hyaluronic acid hybrid scaffold for cartilage regeneration[J]. Journal of Biomedical Materials Research Part A, 2010, 95(4):982-992.
[88] BANDYOPADHYAY A, BOSE S, DAS S. 3D printing of biomaterials[J]. MRS Bulletin, 2015, 40(2):108-115.
[89] COMPTON B G, LEWIS J A. 3D-printing of lightweight cellular composites[J]. Advanced Materials, 2014, 26(34):5930-5935.
[90] VISSER J, PETERS B, BURGER T J, et al. Biofabrication of multi-material anatomically shaped tissue constructs[J]. Biofabrication, 2013, 5(3):035007.
[91] GIANNITELLI S M, MOZETIC P, TROMBETTA M, et al. Combined additive manufacturing approaches in tissue engineering[J]. Acta Biomaterialia, 2015, 24:1-11.
[92] TRAVITZKY N, BONET A, DERMEIK B, et al. Additive manufacturing of ceramic-based materials[J]. Advanced Engineering Materials, 2014, 16(6):729-754.
[93] WILLIAMS J M, ADEWUNMI A, SCHEK R M, et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering[J]. Biomaterials, 2005, 26(23):4817-4827.
[94] GAO C, LIU T, SHUAI C, et al. Enhancement mechanisms of graphene in nano-58S bioactive glass scaffold:mechanical and biological performance[J]. Scientific Reports, 2014, 4:4712.
[95] FENG P, GAO C, SHUAI C, et al. Toughening and strengthening mechanisms of porous akermanite scaffolds reinforced with nano-titania[J]. RSC Advances, 2015, 5(5):3498-3507.
[96] SHUAI C, HAN Z, FENG P, et al. Akermanite scaffolds reinforced with boron nitride nanosheets in bone tissue engineering[J]. Journal of Materials Science:Materials in Medicine, 2015, 26(5):1-9.
[97] LIU J, HU H, LI P, et al. Fabrication and characterization of porous 45S5 glass scaffolds via direct selective laser sintering[J]. Advanced Manufacturing Processes, 2013, 28(6):610-615.
[98] LOWMUNKONG R, SOHMURA T, SUZUKI Y, et al. Fabrication of freeform bone-filling calcium phosphate ceramics by gypsum 3D printing method[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials, 2009, 90(2):531-539.
[99] FARZADI A, WARAN V, SOLATI-HASHJIN M, et al. Effect of layer printing delay on mechanical properties and dimensional accuracy of 3D printed porous prototypes in bone tissue engineering[J]. Ceramics International, 2015, 41(7):8320-8330.
[100] GBURECK U, H LZEL T, KLAMMERT U, et al. Resorbable dicalcium phosphate bone substitutes prepared by 3D powder printing[J]. Advanced Functional Materials, 2007, 17(18):3940-3945.
[101] CASTILHO M, RODRIGUES J, PIRES I, et al. Fabrication of individual alginate-TCP scaffolds for bone tissue engineering by means of powder printing[J]. Biofabrication, 2015, 7(1):015004.
[102] IRSEN S H, LEUKERS B, H CKLING C, et al. Bioceramic granulates for use in 3D printing:process engineering aspects[J]. Materialwissenschaft und Werkstofftechnik, 2006, 37(6):533-537.
[103] KLAMMERT U, GBURECK U, VORNDRAN E, et al. 3D powder printed calcium phosphate implants for reconstruction of cranial and maxillofacial defects[J]. Journal of Cranio-Maxillofacial Surgery, 2010, 38(8):565-570.
[104] ZOCCA A, GOMES C M, BERNARDO E, et al. LAS glass-ceramic scaffolds by three-dimensional printing[J]. Journal of the European Ceramic Society, 2013.
[105] RONCA A, AMBROSIO L, GRIJPMA D W. Preparation of designed poly(D,L-lactide)/nanosized hydroxyapatite composite structures by stereolithography[J]. Acta Biomaterialia, 2013, 9(4):5989-5996.
[106] FERLIN K M, PRENDERGAST M E, MILLER M L, et al. Influence of 3D printed porous architecture on mesenchymal stem cell enrichment and differentiation[J]. Acta Biomaterialia, 2016, 32:161-169.
[107] TESAVIBUL P, FELZMANN R, GRUBER S, et al. Processing of 45S5 Bioglass® by lithography-based additive manufacturing[J]. Materials Letters, 2012, 74:81-84.
[108] CASTLES F, ISAKOV D, LUI A, et al. Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites[J]. Scientific Reports, 2016, 6:22714.
[109] WU Y, ISAKOV D, GRANT P S. Fabrication of composite filaments with high dielectric permittivity for fused deposition 3D printing[J]. Materials, 2017, 10(10).
[110] BANDYOPADHYAY A, DAS K, MARUSICH J, et al. Application of fused deposition in controlled microstructure metal-ceramic composites[J]. Rapid Prototyping Journal, 2006, 12(3):121-128.
[111] LEWIS J A. Direct ink writing of 3D functional materials[J]. Advanced Functional Materials, 2006, 16(17):2193-2204.
[112] EQTESADI S, MOTEALLEH A, PAJARES A, et al. Influence of sintering temperature on the mechanical properties of ∈-PCL-impregnated 45S5 bioglass-derived scaffolds fabricated by robocasting[J]. Journal of the European Ceramic Society, 2015, 35(14):3985-3993.
[113] WU C, LUO Y, CUNIBERTI G, et al. Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability[J]. Acta Biomaterialia, 2011, 7(6):2644-2650.
[114] WU C, FAN W, ZHOU Y, et al. 3D-printing of highly uniform CaSiO3 ceramic scaffolds:preparation,characterization and in vivo osteogenesis[J]. Journal of Materials Chemistry, 2012, 22(24):12288-12295.
[115] EQTESADI S, MOTEALLEH A, MIRANDA P, et al. A simple recipe for direct writing complex 45S5 Bioglass® 3d scaffolds[J]. Materials Letters, 2012, 93:68-71.
[116] EQTESADI S, MOTEALLEH A, MIRANDA P, et al. Robocasting of 45S5 bioactive glass scaffolds for bone tissue engineering[J]. Journal of the European Ceramic Society, 2014, 34(1):107-118.
[117] FU Q, SAIZ E, TOMSIA A P. Bioinspired strong and highly porous glass scaffolds[J]. Advanced Functional Materials, 2011, 21(6):1058-1063.
[118] FU Q, SAIZ E, TOMSIA A P. Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration[J]. Acta biomaterialia, 2011, 7(10):3547-3554.
[119] MORISSETTE S L, LEWIS J A, CESARANO J, et al. Solid freeform fabrication of aqueous alumina-poly(vinyl alcohol) gelcasting suspensions[J]. Journal of the American Ceramic Society, 2010, 83(10):2409-2416.
[120] HE D, ZHUANG C, CHEN C, et al. Rational design and fabrication of porous calcium-magnesium silicate constructs that enhance angiogenesis and improve orbital implantation[J]. ACS Biomaterials Science & Engineering, 2016, 2(9):1519-1527.
[121] WANG X, ZHANG L, KE X, et al. 45S5 Bioglass analogue reinforced akermanite ceramic favorable for additive manufacturing mechanically strong scaffolds[J]. RSC Advances, 2015, 5(124):102727-102735.
[122] FU Q, SAIZ E, RAHAMAN M N, et al. Toward strong and tough glass and ceramic scaffolds for bone repair[J]. Advanced Functional Materials, 2013, 23(44):5461-5476.
[123] 吴成铁. Ca-Si-M系列硅酸盐生物陶瓷的制备及性能研究[D]. 上海:中国科学院上海硅酸盐研究所, 2006. WU Cheng-tie. Preparation and properties of bioactive Ca-Si-M silicate ceramics[D]. Shanghai:Shanghai Institue of Ceramics, Chinese Academy of Sciences, 2006.
[124] 吴成铁, 常江. 硅酸盐生物活性陶瓷用于骨组织修复及再生的研究[J]. 无机材料学报, 2013, 28(1):29-39. WU Cheng-tie, CHANG Jiang. Silicate bioceramics for bone tissue regeneration[J]. Journal of Inorganic Materials, 2013, 28(1):29-39.
[125] WU C, RAMASWAMY Y, BOUGHTON P, et al. Improvement of mechanical and biological properties of porous CaSiO3 scaffolds by poly(D,L-lactic acid) modification[J]. Acta Biomaterialia, 2008, 4(2):343-353.
[126] FENG P, WEI P, SHUAI C, et al. Characterization of mechanical and biological properties of 3-D scaffolds reinforced with zinc oxide for bone tissue engineering[J]. PloS one, 2014, 9(1):e87755.
[127] MEHRALI M, MOGHADDAM E, SEYED SHIRAZI S F, et al. Mechanical and in vitro biological performance of graphene nanoplatelets reinforced calcium silicate composite[J]. PLoS One, 2014, 9(9):e106802.
[128] XU S, YANG X, CHEN X, et al. Effect of borosilicate glass on the mechanical and biodegradation properties of 45S5-derived bioactive glass-ceramics[J]. Journal of Non-Crystalline Solids, 2014, 405:91-99.
[129] EQTESADI S, MOTEALLEH A, PAJARES A, et al. Improving mechanical properties of 13-93 bioactive glass robocast scaffold by poly (lactic acid) and poly (ε-caprolactone) melt infiltration[J]. Journal of Non-Crystalline Solids, 2016, 432:111-119.
[130] FIELDING G A, BANDYOPADHYAY A, BOSE S. Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds[J]. Dental Materials, 2012, 28(2):113-122.
[131] SHUAI C, GAO C, FENG P, et al. Graphene-reinforced mechanical properties of calcium silicate scaffolds by laser sintering[J]. RSC Advances, 2014,4(25):12782.
[132] HE D, ZHUANG C, XU S, et al. 3D printing of Mg-substituted wollastonite reinforcing diopside porous bioceramics with enhanced mechanical and biological performances[J]. Bioactive Materials, 2016,1(1):85-92.
[133] YANG G, YANG X, ZHANG L, et al. Counterionic biopolymers-reinforced bioactive glass scaffolds with improved mechanical properties in wet state[J]. Materials Letters, 2012, 75:80-83.
[134] PHILIPPART A, BOCCACCINI A R, FLECK C, et al. Toughening and functionalization of bioactive ceramic and glass bone scaffolds by biopolymer coatings and infiltration:a review of the last 5 years[J]. Expert Review of Medical Devices, 2015, 12(1):93-111.
[135] SHI M, ZHAI D, ZHAO L, et al. Nanosized mesoporous bioactive glass/poly(lactic-co-glycolic acid) composite-coated CaSiO3 scaffolds with multifunctional properties for bone tissue engineering[J]. Biomed Research International, 2014, 2014:323046.
[136] OSTROWSKA B, DI L A, MORONI L, et al. Influence of internal pore architecture on biological and mechanical properties of 3D fiber deposited scaffolds for bone regeneration[J]. Journal of Biomedical Materials Research Part A, 2016, 104(4):991-1001.
[137] VIVANCO J, AIYANGAR A, ARANEDA A, et al. Mechanical characterization of injection-molded macro porous bioceramic bone scaffolds[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 9(9):137-152.
[138] TARAFDER S, BALLA V K, DAVIES N M, et al. Microwave sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering[J]. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7(8):631-641.
[139] LIU D, ZHUANG J, SHUAI C, et al. Mechanical properties' improvement of a tricalcium phosphate scaffold with poly-l-lactic acid in selective laser sintering[J]. Biofabrication, 2013, 5(2):025005.
[140] MIRANDA P, SAIZ E, GRYN K, et al. Sintering and robocasting of β-tricalcium phosphate scaffolds for orthopaedic applications[J]. Acta Biomaterialia, 2006, 2(4):457-466.
[141] SHUAI C J, MAO Z Z, HAN Z K, et al. Preparation of complex porous scaffolds via selective laser sintering of poly(vinyl alcohol)/calcium silicate[J]. Journal of Bioactive and Compatible Polymers, 2014, 29(2):110-120.
[142] SHUAI C, MAO Z, HAN Z, et al. Fabrication and characterization of calcium silicate scaffolds for tissue engineering[J]. Journal of Mechanics in Medicine and Biology, 2014, 14(4):1450049.
[143] SHAO H, YANG X, HE Y, et al. Bioactive glass-reinforced bioceramic ink writing scaffolds:sintering, microstructure and mechanical behavior[J]. Biofabrication, 2015, 7(3):035010.
[144] ELSAYED H, COLOMBO P, BERNARDO E. Direct ink writing of wollastonite-diopside glass-ceramic scaffolds from a silicone resin and engineered fillers[J]. Journal of the European Ceramic Society, 2017, 37(13):4187-4195.
[145] HAN Z, FENG P, GAO C, et al. Microstructure, mechanical properties and in vitro bioactivity of akermanite scaffolds fabricated by laser sintering[J]. Bio-medical materials and engineering, 2014, 24(24):2073-2080.
[146] FENG P, GAO C, SHUAI C, et al. Liquid phase sintered ceramic bone scaffolds by combined laser and furnace nano-titania[J]. RSC Advances, 2015, 5(5):3498-3507.
[147] FENG P, NIU M, GAO C, et al. A novel two-step sintering for nano-hydroxyapatite scaffolds for bone tissue engineering[J]. Scientific Reports, 2014, 4:5599.
[148] KOLAN K C, LEU M C, HILMAS G E, et al. Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering[J]. Biofabrication, 2011, 3(2):025004.
[149] LIU X, RAHAMAN M N, HILMAS G E, et al. Mechanical properties of bioactive glass (13-93) scaffolds fabricated by robotic deposition for structural bone repair[J]. Acta Biomaterialia, 2013, 9(6):7025-7034.
[150] DELIORMANLI A M, RAHAMAN M N. Direct-write assembly of silicate and borate bioactive glass scaffolds for bone repair[J]. Journal of the European Ceramic Society, 2012, 32(14):3637-3646.
[151] SHAO H, HE Y, FU J, et al. 3D printing magnesium-doped wollastonite/β-TCP bioceramics scaffolds with high strength and adjustable degradation[J]. Journal of the European Ceramic Society, 2016, 36(6):1495-1503.
[152] CHANG B S, LEE C K, HONG K S, et al. Osteoconduction at porous hydroxyapatite with various pore configurations[J]. Biomaterials, 2000, 21(12):1291-1298.
[153] FENG B, JINKANG Z, ZHEN W, et al. The effect of pore size on tissue ingrowth and neovascularization in porous bioceramics of controlled architecture in vivo[J]. Biomedical Materials, 2011, 6(1):015007.
[154] LU J X, FLAUTRE B, ANSELME K, et al. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo[J]. Journal of Materials Science:Materials in Medicine, 1999, 10(2):111-120.
[155] OTSUKI B, TAKEMOTO M, FUJIBAYASHI S, et al. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants:three-dimensional micro-CT based structural analyses of porous bioactive titanium implants[J]. Biomaterials, 2006, 27(35):5892-5900.
[156] MANKANI M H, KUZNETSOV S A, FOWLER B, et al. In vivo bone formation by human bone marrow stromal cells:Effect of carrier particle size and shape[J]. Biotechnology & Bioengineering, 2001, 72(1):96-107.
[157] ZADPOOR A A. Bone tissue regeneration:the role of scaffold geometry[J]. Biomaterials Science, 2015, 3(2):231-245.
[158] GAUTHIER O, BOULER J M, AGUADO E, et al. Macroporous biphasic calcium phosphate ceramics:influence of macropore diameter and macroporosity percentage on bone ingrowth[J]. Biomaterials, 1998, 19(1-3):133-139.
[159] LIU X, RAHAMAN M N, FU Q. Bone regeneration in strong porous bioactive glass (13-93) scaffolds with an oriented microstructure implanted in rat calvarial defects[J]. Acta Biomaterialia, 2013, 9(1):4889-4898.
[160] FENG Y F, WANG L, LI X, et al. Influence of architecture of beta-tricalcium phosphate scaffolds on biological performance in repairing segmental bone defects[J]. PLoS One, 2012, 7(11):e49955.
[161] THIAN E S, AHMAD J H. Influence of nanohydro-xyapatite patterns deposited by electrohydrodynamic spraying on osteoblast response[J]. Journal of Biomedical Materials Research Part A, 2008, 85A(1):188-194.
[162] 朱美忠, 李晓斌, 陈滔. 纳米羟基磷灰石/聚酰胺66复合生物活性人工骨在肢体骨缺损应用87例[J]. 创伤外科杂志, 2014, 16(1):29-31. ZHU Mei-zhong, LI Xiao-bin, CHEN Tao. Curative effect of bioactive artifical bone by nano-hydroxyapatite/polyamide66 in treating limb bone defect in 87 cases[J]. Journal of Traumatic Surgery, 2014, 16(1):29-31.
[163] TEIXEIRA S, FERNANDES H, LEUSINK A, et al. In vivo evaluation of highly macroporous ceramic scaffolds for bone tissue engineering[J]. Journal of Biomedical Materials Research Part A, 2010, 93(2):567-575.
[164] ZHANG J, ZHOU H, YANG K, et al. RhBMP-2-loaded calcium silicate/calcium phosphate cement scaffold with hierarchically porous structure for enhanced bone tissue regeneration[J]. Biomaterials, 2013, 34(37):9381-9392.
[165] TARAFDER S, DAVIES N M, BANDYOPADHYAY A, et al. 3D printed tricalcium phosphate scaffolds:Effect of SrO and MgO doping on osteogenesis in a rat distal femoral defect model[J]. Biomaterials Science, 2013, 1(12):1250-1259.
[166] WANG X, WU X, XING H, et al. Porous nanohydroxyapatite/collagen scaffolds loading Insulin PLGA particles for restoration of critical size bone defect[J]. ACS Applied Materials & Interfaces, 2017, 9(13):11380-11391.
[167] HU Y, WANG J, XING W, et al. Surface-modified pliable PDLLA/PCL/β-TCP scaffolds as a promising delivery system for bone regeneration[J]. Journal of Applied Polymer Science, 2014, 131(20):40951.
[168] ZHANG Y, XIA L, ZHAI D, et al. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis[J]. Nanoscale, 2015, 7(45):19207-19221.
[169] LIU X, RAHAMAN M N, LIU Y, et al. Enhanced bone regeneration in rat calvarial defects implanted with surface-modified and BMP-loaded bioactive glass (13-93) scaffolds[J]. Acta Biomaterialia, 2013, 9(7):7506-7517.
[170] WANG C, LIN K, CHANG J, et al. Osteogenesis and angiogenesis induced by porous beta-CaSiO3/PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways[J]. Biomaterials, 2013, 34(1):64-77.
[171] WANG Q, XIA Q, WU Y, et al. 3D-printed atsttrin-incorporated alginate/hydroxyapatite scaffold promotes bone defect regeneration with TNF/TNFR signaling involvement[J]. Advanced Healthcare Materials, 2015, 4(11):1701-1708.
[172] ZHANG J, LIU X, LI H, et al. Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway[J]. Stem Cell Research & Therapy, 2016, 7(1):136.
[173] HAO S, MENG J, ZHANG Y, et al. Macrophage phenotypic mechanomodulation of enhancing bone regeneration by superparamagnetic scaffold upon magnetization[J]. Biomaterials, 2017, 140:16-25.
[174] LIU A, SUN M, YANG X, et al. Three-dimensional printing akermanite porous scaffolds for load-bearing bone defect repair:an investigation of osteogenic capability and mechanical evolution[J]. Journal of Biomaterials Applications, 2016, 31(5):650.
[175] CARLISLE E M. Silicon:a possible factor in bone calcification[J]. Science, 1970, 167(167):279-280.
[176] HOPPE A, G LDAL N S, BOCCACCINI A R. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics[J]. Biomaterials, 2011, 32(11):2757-2774.
[177] WU C, ZHOU Y, XU M, et al. Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity[J]. Biomaterials, 2013, 34(2):422-433.
[178] MA B, LI X, ZHANG Q, et al. Metabonomic profiling in studying anti-osteoporosis effects of strontium fructose 1,6-diphosphate on estrogen deficiency-induced osteoporosis in rats by GC/TOF-MS[J]. European Journal of Pharmacology, 2013, 718(1-3):524-532.
[179] WU C, RAMASWAMY Y, KWIK D, et al. The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties[J]. Biomaterials, 2007, 28(21):3171-3181.
[180] OSTROWSKI N, LEE B, HONG D, et al. Synthesis, osteoblast, and osteoclast viability of amorphous and crystalline tri-magnesium phosphate[J]. ACS Biomaterials Science & Engineering, 2015, 1(1):52-63.
[181] DIBA M, TAPIA F, BOCCACCINI A R, et al. Magnesium-containing bioactive glasses for biomedical applications[J]. International Journal of Applied Glass Science, 2012, 3(3):221-253.
[182] TAO Z S, ZHOU W S, HE X W, et al. A comparative study of zinc, magnesium, strontium-incorporated hydroxyapatite-coated titanium implants for osseointegration of osteopenic rats[J]. Materials Science & Engineering C Materials for Biological Applications, 2016, 62:226-232.
[183] MAO L, XIA L, CHANG J, et al. The synergistic effects of Sr and Si bioactive ions on osteogenesis, osteoclastogenesis and angiogenesis for osteoporotic bone regeneration[J]. Acta Biomaterialia, 2017, 61:217-232.
[184] WU C, CHEN Z, YI D, et al. Multidirectional effects of Sr-, Mg-, and Si-containing bioceramic coatings with high bonding strength on inflammation, osteoclastogenesis, and osteogenesis[J]. ACS applied materials & interfaces, 2014, 6(6):4264-4276.
[185] DENG C, YAO Q, FENG C, et al. 3D printing of bilineage constructive biomaterials for bone and cartilage regeneration[J]. Advanced Functional Materials, 2017, 27(36):1703117.
[186] MAGGI A, LI H, GREER J R. Three-dimensional nano-architected scaffolds with tunable stiffness for efficient bone tissue growth[J]. Acta Biomaterialia, 2017, 63:294-305.
[187] FAHIMIPOUR F, RASOULIANBOROUJENI M, DASHTIMOGHADAM E, et al. 3D printed TCP-based scaffold incorporating VEGF-loaded PLGA microspheres for craniofacial tissue engineering[J]. Dental Materials, 2017, 33(11):1205-1216.
[188] LEE J, YUN H S. Effect of hydroxyapatite-containing microspheres embedded into three-dimensional magnesium phosphate scaffolds on the controlled release of lysozyme and in vitro biodegradation[J]. International Journal of Nanomedicine, 2014, 9(31):4177-4189.
[189] YEO M, SIMON C G, KIM G. Effects of offset values of solid freeform fabricated PCL-β-TCP scaffolds on mechanical properties and cellular activities in bone tissue regeneration[J]. Journal of Materials Chemistry, 2012, 22(40):21636-21646.
[190] MA H, LUO J, SUN Z, et al. 3D printing of biomaterials with mussel-inspired nanostructures for tumor therapy and tissue regeneration[J]. Biomaterials, 2016, 111:138-148.
[191] ZHANG Y, ZHAI D, XU M, et al. 3D-printed bioceramic scaffolds with antibacterial and osteogenic activity[J]. Biofabrication, 2017, 9(2):025037.
[192] VARGAS-ALFREDO N, DORRONSORO A, CORTAJARENA A L, et al. Antimicrobial 3D porous scaffolds prepared by additive manufacturing and breath figures[J]. ACS Applied Materials & Interfaces, 2017, 9(42):37454-37462.
[193] YANG C, WANG X, MA B, et al. 3D-printed bioactive Ca3SiO5 bone cement scaffolds with nano surface structure for bone regeneration[J]. ACS Applied Materials & Interfaces, 2017, 9(7):5757-5767.
[194] ZHU M, LI K, ZHU Y, et al. 3D-printed hierarchical scaffold for localized isoniazid/rifampin drug delivery and osteoarticular tuberculosis therapy[J]. Acta Biomaterialia, 2015, 16(1):145-155.
[195] JAKUS A, RUTZ A, JORDAN S, et al. Hyperelastic "bone":a highly versatile, growth factor-free, osteoregenerative, scalable, and surgically friendly biomaterial[J]. Science Translational Medicine, 2016, 8(358):358ra127-358ra127.
[196] XIE J, YANG X, SHAO H, et al. Simultaneous mechanical property and biodegradation improvement of wollastonite bioceramic through magnesium dilute doping[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 54:60-71.
[197] SUN M, LIU A, SHAO H, et al. Systematical evaluation of mechanically strong 3D printed diluted magnesium doping wollastonite scaffolds on osteogenic capacity in rabbit calvarial defects[J]. Scientific Reports, 2016, 6:34029.
[198] LIU A, SUN M, SHAO H, et al. The outstanding mechanical response and bone regeneration capacity of robocast dilute magnesium-doped wollastonite scaffolds in critical size bone defects[J]. Journal of Materials Chemistry B, 2016, 4(22):3945-3958.
[199] SHAO H, KE X, LIU A, et al. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect[J]. Biofabrication, 2017, 9(2):025003.
[200] SHAO H, LIU A, KE X, et al. 3D robocasting magnesium-doped wollastonite/TCP bioceramic scaffolds with improved bone regeneration capacity in critical sized calvarial defects[J]. Journal of Materials Chemistry B, 2017, 5:2941-2951.
[201] 邵惠锋. 3D打印活性陶瓷骨修复支架研究[D]. 杭州:浙江大学, 2017. SHAO Hui-feng. Research on 3D printed bioactive ceramic bone repair scaffold[D]. Hangzhou:Zhejiang University, 2017. |