|
|
Identification of TBM surrounding rock based on Markov process and deep neural network |
Yi-zhe MAO( ),Guo-fang GONG*( ),Xing-hai ZHOU,Fei WANG |
State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract In order to realize the real-time identification of tunnel surrounding rock, based on the Markov method and the deep neural network model, a real-time identification method of tunnel boring machine (TBM) surrounding rock was proposed, which combined the prior surrounding rock information and the excavation parameters. The Markov process method of tunnel surrounding rock classification was used to predict the distribution probability of surrounding rock along the tunnel according to the geological exploration data of the construction site. The surrounding rock distribution probability was used as the prior rock information. The prior rock information and the TBM excavation parameters were used together as the input of the neural network, and the real surrounding rock category as an output. A deep neural network was trained to achieve real-time identification of the surrounding rock in front of the TBM. Experiments on practical engineering data showed that the overall recognition rate of the surrounding rock of the designed deep neural network model was above 96%. Compared with taking the excavation parameters as input, when the priori surrounding rock information and the excavation parameters were combined as input, the recognition rate of the surrounding rock of the model was increased by more than 6%.
|
Received: 10 November 2019
Published: 25 April 2021
|
|
Fund: 国家重点研发计划资助项目(2018YFB1702503,2017YFB1302602,2017YFB1302604) |
Corresponding Authors:
Guo-fang GONG
E-mail: 21825058@zju.edu.cn;gfgong@zju.edu.cn
|
基于马尔可夫过程和深度神经网络的TBM围岩识别
为了实现隧道围岩的实时识别,基于马尔可夫过程和深度神经网络模型,提出将先验围岩信息和掘进参数结合,作为深度神经网络输入的隧道掘进机(TBM)围岩实时识别方法. 根据施工现场地质勘探资料,用马尔可夫过程的隧道围岩分类方法预测隧道沿线的围岩分布概率;将该围岩分布概率作为先验围岩信息,结合TBM掘进参数作为神经网络输入,真实围岩类别作为输出,训练深度神经网络以实现对TBM前方围岩的实时识别. 使用工程现场数据进行对比实验,结果表明,所设计的深度神经网络模型的围岩总体识别率高于96%. 相比于仅将掘进参数作为输入,当结合先验围岩信息和掘进参数作为输入时,模型围岩识别率提高6%以上.
关键词:
隧道掘进机(TBM),
马尔可夫过程,
深度神经网络,
围岩识别,
预测
|
|
[1] |
杨华勇, 周星海, 龚国芳 对全断面隧道掘进装备智能化的一些思考[J]. 隧道建设, 2018, 38 (12): 1919- 1926 YANG Hua-yong, ZHOU Xing-hai, GONG Guo-fang Perspectives in intelligentization of tunnel boring machine (TBM)[J]. Tunnel construction, 2018, 38 (12): 1919- 1926
doi: 10.3973/j.issn.2096-4498.2018.12.001
|
|
|
[2] |
HWANG J H, LU C C A semi-analytical method for analyzing the tunnel water inflow[J]. Tunnelling and Underground Space Technology, 2007, 22 (1): 39- 46
doi: 10.1016/j.tust.2006.03.003
|
|
|
[3] |
SCHEPERS R, RAFAT G, GELBKE C, et al Application of borehole logging, core imaging and tomography to geotechnical exploration[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38 (6): 867- 876
doi: 10.1016/S1365-1609(01)00052-1
|
|
|
[4] |
ASHIDA Y Seismic imaging ahead of a tunnel face with three-component geophones[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38 (6): 823- 831
doi: 10.1016/S1365-1609(01)00047-8
|
|
|
[5] |
JETSCHNY S, BOHLEN T, KURZMANN A Seismic prediction of geological structures ahead of the tunnel using tunnel surface waves[J]. Geophysical Prospecting, 2011, 59 (5): 934- 946
|
|
|
[6] |
LEE I M, TRUONG Q H, KIM D H, et al Discontinuity detection ahead of a tunnel face utilizing ultrasonic reflection: laboratory scale application[J]. Tunnelling and Underground Space Technology, 2009, 24 (2): 155- 163
doi: 10.1016/j.tust.2008.06.001
|
|
|
[7] |
吴俊, 毛海和, 应松, 等 地质雷达在公路隧道短期地质超前预报中的应用[J]. 岩土力学, 2003, 24 (Suppl.1): 154- 157 WU Jun, MAO Hai-he, YING Song, et al Application of ground radar to short-term geological forecast for tunnel construction[J]. Rock and Soil Mechanics, 2003, 24 (Suppl.1): 154- 157
|
|
|
[8] |
RISSAFI Y, TALBI L, GHADDAR M Experimental characterization of an UWB propagation channel in underground mines[J]. IEEE Transactions on Antennas and Propagation, 2011, 60 (1): 240- 246
|
|
|
[9] |
刘新荣, 刘永权, 杨忠平, 等 基于地质雷达的隧道综合超前预报技术[J]. 岩土工程学报, 2015, 37 (2): 51- 56 LIU Xin-rong, LIU Yong-quan, YANG Zhong-pinng, et al Synthetic advanced deologicall prediction technology for tunnals based on GPR[J]. Chinese Journal of Geotechnical Engineering, 2015, 37 (2): 51- 56
|
|
|
[10] |
ERHARTER G H, MARCHER T, REINHOLD C Application of artificial neural networks for underground construction – chances and challenges – insights from the BBT exploratory tunnel Ahrental Pfons[J]. Geomechanics and Tunnelling, 2019, 12 (5): 472- 477
doi: 10.1002/geot.201900027
|
|
|
[11] |
ERHARTER G H, MARCHER T, REINHOLD C. Comparison of artificial neural networks for TBM data classification [C]// Proceedings of the 14th International Congress on Rock Mechanics and Rock Engineering. [S.l.]: CRC Press, 2019: 2426–2433 .
|
|
|
[12] |
ZHANG Q, LIU Z, TAN J Prediction of geological conditions for a tunnel boring machine using big operational data[J]. Automation in Construction, 2019, 100: 73- 83
doi: 10.1016/j.autcon.2018.12.022
|
|
|
[13] |
朱北斗, 龚国芳, 周如林, 等 基于盾构掘进参数的BP神经网络地层识别[J]. 浙江大学学报: 工学版, 2011, 45 (5): 851- 857 ZHU Bei-dou, GONG Guo-fang, ZHOU Ru-lin, et al Identification of strata with BP neural network based on parameters of shield driving[J]. Journal of Zhejiang University: Engineering Science, 2011, 45 (5): 851- 857
|
|
|
[14] |
JUNG J H, CHUNG H, KWON Y S, et al An ANN to predict ground condition ahead of tunnel face using TBM operational data[J]. KSCE Journal of Civil Engineering, 2019, 23 (7): 3200- 3206
doi: 10.1007/s12205-019-1460-9
|
|
|
[15] |
NIE S W, XUE L, JIA G P, et al. Identification of surrounding rock in TBM excavation with deep neural network [C]// 2019 2nd International Conference on Artificial Intelligence and Big Data. Guangzhou: [s.n.], 2019: 251-255.
|
|
|
[16] |
MOAVENZADEH F, EINSTEIN H H, MARKOW M J, et al. Tunnel cost model: a stochastic simulation model of hard rock tunneling. volume 1. summary report [R]. Massachusetts: [s.n.], 1974.
|
|
|
[17] |
CHAN M H C. A geological prediction and updating model in tunneling [D]. Massachusetts: Massachusetts Institute of Technology, 1981.
|
|
|
[18] |
IOANNOU P G Geologic prediction model for tunneling[J]. Journal of Construction Engineering and Management, 1987, 113 (4): 569- 590
doi: 10.1061/(ASCE)0733-9364(1987)113:4(569)
|
|
|
[19] |
刘东海, 周云晴, 王帅, 等 岩性Markov预测下的长隧洞TBM施工进度随机仿真分析[J]. 系统仿真学报, 2009, 21 (2): 558- 562 LIU Dong-hai, ZHOU Yun-qing, WANG Shuai, et al Stochastic simulation analysis of TBM construction progress of long tunnel under the prediction of lithology Markov[J]. Journal of System Simulation, 2009, 21 (2): 558- 562
|
|
|
[20] |
徐琛, 胡程科, 刘晓丽, 等 基于Markov过程与信息熵法的长隧道勘探位置优化[J]. 地下空间与工程学报, 2018, 14 (6): 1611- 1617 XU Chen, HU Cheng-ke, LIU Xiao-li, et al Location optimization of long tunnel exploration based on the Markov method and information entropy[J]. Chinese Journal of Underground Space and Engineering, 2018, 14 (6): 1611- 1617
|
|
|
[21] |
王芳芳, 李景叶, 陈小宏 基于马尔科夫链先验模型的贝叶斯岩相识别[J]. 石油地球物理勘探, 2014, 41 (9): 183- 189 WANG Fang-fang, LI Jing-ye, CHEN Xiao-hong Bayesian facies identification based on Markov chain prior model[J]. Petroleum Geophysical Exploration, 2014, 41 (9): 183- 189
|
|
|
[22] |
赵海雷, 陈馈, 周建军, 等 引松供水4标TBM连续穿越灰岩的施工技术研究[J]. 隧道建设, 2017, 37 (3): 354- 362 ZHAO Hai-lei, CHEN Kui, ZHOU Jian-ju, et al Research on construction technologies of TBM continuous boring through the limestone section of bid section No. 4 of Songhua river water conveyance project[J]. Tunnel Construction, 2017, 37 (3): 354- 362
doi: 10.3973/j.issn.1672-741X.2017.03.015
|
|
|
[23] |
段理文. TBM操作参数智能决策方法研究[D]. 杭州: 浙江大学, 2019. DUAN Li-wen. Research on intelligent decision method of TBM operating parameters [D]. Hangzhou: Zhejiang University, 2019.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|