Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (8): 1426-1435    DOI: 10.3785/j.issn.1008-973X.2021.08.003
    
TBM tunneling parameters prediction based on Locally Linear Embedding and Support Vector Regression
Jian-bin LI1(),Ying-ying WU2,*(),Peng-yu LI2,Xiao-feng ZHENG2,Jian-an XU2,Xiang-yu JU2
1. China Railway Hi-tech Industry Co. Ltd, Beijing 100000, China
2. China Railway Engineering Equipment Co. Ltd, Zhengzhou 450016, China
Download: HTML     PDF(1397KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Tunnel?boring?machine (TBM) tunneling parameter prediction was conducted based on the Yinsong project in Jilin. A TBM tunneling data segmentation method was proposed to extract features from rising phase and stable phase. Thrust, cutter head speed, advance rate, torque, cutter head speed setting, advance rate setting, penetration rate, field penetration index (FPI) and torque penetration index (TPI) in the first 30 s of rising phase were extracted as the input of the prediction models. The locally linear embedding (LLE) was used to reduce the dimensions of the characteristic data of rising phase. A prediction model for TBM construction control parameters (propulsion speed, cutter head speed) and load parameters (total propulsion force, cutter head torque) was established based on the support vector regression (SVR). The impact on the prediction effect of whether to combine the FPI and TPI indexes of the previous tunneling cycle was analyzed and compared. Results show that favorable prediction effects for propulsion speed, cutter head speed, total propulsion force and cutter head torque were obtained based on the proposed model. The mean absolute percentage errors on the test set were all below 15%. The proposed method can provide guidance for TBM site operation due to the high prediction accuracy.



Key wordstunnel boring machine (TBM)      tunneling parameter      tunneling performance      prediction      locally linear embedding (LLE)      support vector regression (SVR)     
Received: 22 June 2020      Published: 01 September 2021
CLC:  U 45  
Fund:  国家重点研发计划资助项目(2018YFB1702504)
Corresponding Authors: Ying-ying WU     E-mail: lijianbin@crectbm.com;wyy2218@126.com
Cite this article:

Jian-bin LI,Ying-ying WU,Peng-yu LI,Xiao-feng ZHENG,Jian-an XU,Xiang-yu JU. TBM tunneling parameters prediction based on Locally Linear Embedding and Support Vector Regression. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1426-1435.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.08.003     OR     https://www.zjujournals.com/eng/Y2021/V55/I8/1426


基于局部线性嵌入和支持向量机回归的TBM施工参数预测

依托吉林引松工程开展隧道掘进机(TBM)施工参数预测研究,提出TBM施工数据分段提取算法,提取上升段前30 s的总推进力、刀盘转速、推进速度、刀盘扭矩、刀盘转速电位器设定值、推进速度电位器设定值、贯入度、贯入度指数(FPI)、扭矩切深指数(TPI)9个参数作为输入;通过局部线性嵌入(LLE)完成对上升段数据特征的降维;基于支持向量机回归(SVR)建立TBM施工控制参数(推进速度、刀盘转速)和负载参数(总推进力、刀盘扭矩)预测模型. 分析是否结合前一掘进循环的FPI、TPI指数进行预测对预测效果的影响. 结果表明,上述方法在推进速度、刀盘转速、总推进力、刀盘扭矩的预测中均取得了较好的预测效果,平均预测绝对百分比误差均小于15%,验证了该预测方法的有效性,该方法可以为TBM现场施工提供指导.


关键词: 隧道掘进机(TBM),  施工参数,  掘进性能,  预测,  局部线性嵌入(LLE),  支持向量机回归(SVR) 
Fig.1 Structure of tunneling parameter prediction model
Fig.2 Geographical plan of TBM section 3
Fig.3 Proportion of rock strength and rock mass
参数 数值
开挖直径/mm 7 930
滚刀数量 17 inch 8 把,19 inch 48 把
刀盘总推力/kN 23260
刀盘驱动功率/kW 3500
刀盘扭矩/(kN·m) 8410
刀盘脱困扭矩/(kN·m) 12615
最大刀盘转速/(r·min?1) 7.6
Tab.1 TBM Specification
Fig.4 Geological section map of TBM section 3
Fig.5 TBM tunneling cycle segment description
Fig.6 Flow chart of tunneling cycle segmentation algorithm
Fig.7 Flow chart of thrust and torque prediction model
指标类别 参数 MAE RMSE R2 MAPE/%
含上一循环FPI、TPI F 793.60 1065.97 0.90 6.72
T 174.58 242.05 0.89 8.97
不含上一循环FPI、TPI F 880.44 1199.78 0.88 7.54
T 257.59 367.71 0.74 14.93
Tab.2 Impact of FPI and TPI on thrust and torque prediction results
Fig.8 Flow chart of advance rate and cutter head speed prediction model
指标类别 参数 MAE RMSE R2 MAPE/%
含上一循环FPI、TPI v 6.52 9.49 0.50 13.08
n 0.24 0.38 0.82 4.03
不含上一循环FPI、TPI v 7.87 11.18 0.30 16.04
n 0.32 0.47 0.72 5.46
Tab.3 Impact of FPI and TPI on prediction results of advance rate and cutter head speed
Fig.9 Prediction results of thrust and torque
Fig.10 Prediction results of advance rate and cutter head speed
Fig.11 Advance rate and cutter head speed per minute in one TBM tunneling cycle
Fig.12 Thrust prediction per minute in one TBM tunneling cycle
Fig.13 Torque prediction per minute in one TBM tunneling cycle
预测参数 数据集 MAE MAPE% R2 RMSE
总推进力 训练集 698.01 5.76 0.91 970.19
测试集 810.65 6.63 0.89 1086.04
刀盘扭矩 训练集 149.65 7.14 0.90 214.17
测试集 161.26 7.53 0.89 223.99
推进速度 训练集 5.81 11.29 0.62 8.35
测试集 6.71 13.43 0.52 9.46
刀盘转速 训练集 0.21 3.65 0.84 0.36
测试集 0.24 4.04 0.81 0.39
Tab.4 Prediction results of tunneling parameter prediction model
[1]   张镜剑, 傅冰骏 隧道掘进机在我国应用的进展[J]. 岩石力学与工程学报, 2007, 26 (2): 226- 238
ZHANG Jing-jian, FU Bing-jun Advances in tunnel boring machine application in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26 (2): 226- 238
doi: 10.3321/j.issn:1000-6915.2007.02.002
[2]   JAKOBSEN P D, LANGMAACK L, DAHL F, et al Development of the Soft Ground Abrasion Tester (SGAT) to predict TBM tool wear, torque and thrust[J]. Tunnelling and Underground Space Technology, 2013, 38: 398- 408
doi: 10.1016/j.tust.2013.07.021
[3]   VILLENEUVE M C Hard rock tunnel boring machine penetration test as an indicator of chipping process efficiency[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, (4): 41- 52
[4]   OZDEMIR L. Development of theoretical equations for predicting tunnel boreability[D]. Colorado: Colorado School of Mines, 1977.
[5]   ROSTAMI J, OZDEMIR L. A new model for performance prediction of hard rock TBMs[C]// Proceedings of the Rapid Excavation and Tunneling Conference. Boston MA: RETC Conference proceedings, 1993: 793–809.
[6]   RICO M. Hard rock tunnel boring: performance predictions and cutter life assessments[D]. Trondheim: Norwegian University of Science and Technology, 2016.
[7]   YAGIZ S, GOKCEOGLU C, SEZER E, et al Application of two non-linear prediction tools to the estimation of tunnel boring machine performance[J]. Engineering Applications of Artificial Intelligence, 2009, 22 (4/5): 808- 814
[8]   ADOKO A C, GOKCEOGLU C, YAGIZ S Bayesian prediction of TBM penetration rate in rock mass[J]. Engineering Geology, 2017, 226: 245- 256
doi: 10.1016/j.enggeo.2017.06.014
[9]   ARMAGHANI D J, MOHAMAD E T, NARAYANASAMY M S, et al Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition[J]. Tunnelling and Underground Space Technology, 2017, 63: 29- 43
doi: 10.1016/j.tust.2016.12.009
[10]   SUN W, SHI M, ZHANG C, et al Dynamic load prediction of tunnel boring machine (TBM) based on heterogeneous in-situ data[J]. Automation in Construction, 2018, 92: 23- 34
doi: 10.1016/j.autcon.2018.03.030
[11]   罗华, 陈祖煜, 龚国芳, 等 基于现场数据的TBM掘进速率研究[J]. 浙江大学学报: 工学版, 2018, 52 (8): 141- 149
LUO Hua, CHEN Zu-yu, GONG Guo-fang, et al Advance rate of TBM based on field boring data[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (8): 141- 149
[12]   张娜, 李建斌, 荆留杰, 等 基于隧道掘进机掘进过程的岩体状态感知方法[J]. 浙江大学学报: 工学版, 2019, 53 (10): 1977- 1985
ZHANG Na, LI Jian-bin, JING Liu-jie, et al Prediction method of rockmass parameters based on tunnelling process of tunnel boring machine[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (10): 1977- 1985
doi: 10.3785/j.issn.1008-973X.2019.10.015
[13]   侯少康, 刘耀儒, 张 凯 基于IPSO-BP混合模型的TBM掘进参数预测[J]. 岩石力学与工程学报, 2020, 39 (8): 1648- 1657
HOU Shao-kang, LIU Yao-ru, ZHANF Kai Prediction of TBM tunnelling parameters based on IPSO-BP hybrid model[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39 (8): 1648- 1657
[14]   YOU S, MA H Manifold topological multi-resolution analysis method[J]. Pattern Recognition, 2011, 44 (8): 1629- 1648
doi: 10.1016/j.patcog.2010.12.023
[15]   ROWEIS S T, SAUL L K Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290 (5500): 2323- 2326
doi: 10.1126/science.290.5500.2323
[16]   HAMILTON W H, DOLLINGER G L Optimizing tunnel boring machine and cutter design for greater boreability[J]. RETC Proceedings, 1979, 1: 280- 296
[17]   SUNDIN N O, WÄNSTEDT S. A boreability model for TBM’s [C]// 1st North American Rock Mechanics Symposium. Austin: American Rock Mechanics Association, 1994.
[18]   NELSON P, THOMAS O R U D, FRED K H Factors affecting TBM penetration rates in sedimentary rocks proceedings[J]. Symposium on Rock Mechanics, 1983, 24: 227- 237
[19]   FUKUI K, OKUBO S Some attempts for estimating rock strength and rock mass classification from cutting force and investigation of optimum operation of tunnel boring machines[J]. Rock Mechanics and Rock Engineering, 2006, 39 (1): 25- 44
doi: 10.1007/s00603-005-0071-6
[20]   龚秋明, 佘祺锐, 侯哲生, 等 高地应力作用下大理岩岩体的TBM掘进试验研究[J]. 岩石力学与工程学报, 2010, 29 (12): 2522- 2532
GONG Qiu-ming, SHE Qi-rui, HOU Zhe-sheng, et al Experimental study of TBM penetration in marble rock mass under high geostress[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29 (12): 2522- 2532
[1] Chao-bo ZHANG,Yong-zheng LIU,Hong-bo LI,Yang ZHAO,Li-zhu ZHANG,Zi-hao WANG. Weighted residual clustering-based building load prediction interval estimation[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 930-937.
[2] Wen-juan LI,Hong-gao DENG,Mou MA,Jun-zheng JIANG. Prediction method of infectious disease transmission based on graph signal processing[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 1017-1024.
[3] Cheng CHEN,Hao ZHANG,Yong-qiang LI,Yuan-jing FENG. Knowledge graph link prediction based on relational generative graph attention network[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 1025-1034.
[4] Xi-yun YANG,Ya-xin LIU,Wen-bing MA,Guo-tong XING,Feng GAO. Bidding strategy of wind farm participation in frequency regulation market considering wind power uncertainty[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 736-744.
[5] Fei HE,Cang-hong JIN,Ming-hui WU. Uncertain behavior sequence prediction method based on intent identification[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 254-262.
[6] Ya-feng YANG,Yi-ping WANG,Zhi-xin CHEN,Jian-jun SU,Bin YANG. Dispersion characteristics of droplet in bus and risk prediction of infection[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 161-167.
[7] Fa-ming HUANG,Li-han PAN,Chi YAO,Chuang-bing ZHOU,Qing-hui JIANG,Zhi-lu CHANG. Landslide susceptibility prediction modelling based on semi-supervised machine learning[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1705-1713.
[8] Wei-qing PANG,Ning HE,Yan-hua LUO,Xi YU. ABC-SVM disease prediction method based on data fusion in community health care[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1253-1260.
[9] Fang-di XIE,Qiang ZHAI,Wei-hong GU. Risk prediction of TBM jamming based on dynamic Bayesian network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1339-1350.
[10] Hao LIN,Lei-xiao LI,Hui WANG,Zhi-qiang MA,Jian-xiong WAN. Model based on relevance vector machine and fuzzy comprehensive evaluation for road condition prediction[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1072-1082.
[11] Jia-hui XU,Jing-chang WANG,Ling CHEN,Yong WU. Surface water quality prediction model based on graph neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 601-607.
[12] Yong YU,Jing-yuan XUE,Sheng DAI,Qiang-wei BAO,Gang ZHAO. Quality prediction and process parameter optimization method for machining parts[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 441-447.
[13] Yi-zhe MAO,Guo-fang GONG,Xing-hai ZHOU,Fei WANG. Identification of TBM surrounding rock based on Markov process and deep neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 448-454.
[14] Fa-ming HUANG,Zhong-shan CAO,Chi YAO,Qing-hui JIANG,Jia-wu CHEN. Landslides hazard warning based on decision tree and effective rainfall intensity[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 472-482.
[15] Fa-sheng MIAO,Yi-ping WU,Lin-wei LI,Kang LIAO,Yang XUE. Prediction of joint roughness coefficient of rock mass based on Boosting-decision tree C5.0[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 483-490.