Tunnel?boring?machine (TBM) tunneling parameter prediction was conducted based on the Yinsong project in Jilin. A TBM tunneling data segmentation method was proposed to extract features from rising phase and stable phase. Thrust, cutter head speed, advance rate, torque, cutter head speed setting, advance rate setting, penetration rate, field penetration index (FPI) and torque penetration index (TPI) in the first 30 s of rising phase were extracted as the input of the prediction models. The locally linear embedding (LLE) was used to reduce the dimensions of the characteristic data of rising phase. A prediction model for TBM construction control parameters (propulsion speed, cutter head speed) and load parameters (total propulsion force, cutter head torque) was established based on the support vector regression (SVR). The impact on the prediction effect of whether to combine the FPI and TPI indexes of the previous tunneling cycle was analyzed and compared. Results show that favorable prediction effects for propulsion speed, cutter head speed, total propulsion force and cutter head torque were obtained based on the proposed model. The mean absolute percentage errors on the test set were all below 15%. The proposed method can provide guidance for TBM site operation due to the high prediction accuracy.
Jian-bin LI,Ying-ying WU,Peng-yu LI,Xiao-feng ZHENG,Jian-an XU,Xiang-yu JU. TBM tunneling parameters prediction based on Locally Linear Embedding and Support Vector Regression. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1426-1435.
Fig.1Structure of tunneling parameter prediction model
Fig.2Geographical plan of TBM section 3
Fig.3Proportion of rock strength and rock mass
参数
数值
开挖直径/mm
7 930
滚刀数量
17 inch 8 把,19 inch 48 把
刀盘总推力/kN
23260
刀盘驱动功率/kW
3500
刀盘扭矩/(kN·m)
8410
刀盘脱困扭矩/(kN·m)
12615
最大刀盘转速/(r·min?1)
7.6
Tab.1TBM Specification
Fig.4Geological section map of TBM section 3
Fig.5TBM tunneling cycle segment description
Fig.6Flow chart of tunneling cycle segmentation algorithm
Fig.7Flow chart of thrust and torque prediction model
指标类别
参数
MAE
RMSE
R2
MAPE/%
含上一循环FPI、TPI
F
793.60
1065.97
0.90
6.72
T
174.58
242.05
0.89
8.97
不含上一循环FPI、TPI
F
880.44
1199.78
0.88
7.54
T
257.59
367.71
0.74
14.93
Tab.2Impact of FPI and TPI on thrust and torque prediction results
Fig.8Flow chart of advance rate and cutter head speed prediction model
指标类别
参数
MAE
RMSE
R2
MAPE/%
含上一循环FPI、TPI
v
6.52
9.49
0.50
13.08
n
0.24
0.38
0.82
4.03
不含上一循环FPI、TPI
v
7.87
11.18
0.30
16.04
n
0.32
0.47
0.72
5.46
Tab.3Impact of FPI and TPI on prediction results of advance rate and cutter head speed
Fig.9Prediction results of thrust and torque
Fig.10Prediction results of advance rate and cutter head speed
Fig.11Advance rate and cutter head speed per minute in one TBM tunneling cycle
Fig.12Thrust prediction per minute in one TBM tunneling cycle
Fig.13Torque prediction per minute in one TBM tunneling cycle
预测参数
数据集
MAE
MAPE%
R2
RMSE
总推进力
训练集
698.01
5.76
0.91
970.19
测试集
810.65
6.63
0.89
1086.04
刀盘扭矩
训练集
149.65
7.14
0.90
214.17
测试集
161.26
7.53
0.89
223.99
推进速度
训练集
5.81
11.29
0.62
8.35
测试集
6.71
13.43
0.52
9.46
刀盘转速
训练集
0.21
3.65
0.84
0.36
测试集
0.24
4.04
0.81
0.39
Tab.4Prediction results of tunneling parameter prediction model
[1]
张镜剑, 傅冰骏 隧道掘进机在我国应用的进展[J]. 岩石力学与工程学报, 2007, 26 (2): 226- 238 ZHANG Jing-jian, FU Bing-jun Advances in tunnel boring machine application in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26 (2): 226- 238
doi: 10.3321/j.issn:1000-6915.2007.02.002
[2]
JAKOBSEN P D, LANGMAACK L, DAHL F, et al Development of the Soft Ground Abrasion Tester (SGAT) to predict TBM tool wear, torque and thrust[J]. Tunnelling and Underground Space Technology, 2013, 38: 398- 408
doi: 10.1016/j.tust.2013.07.021
[3]
VILLENEUVE M C Hard rock tunnel boring machine penetration test as an indicator of chipping process efficiency[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, (4): 41- 52
[4]
OZDEMIR L. Development of theoretical equations for predicting tunnel boreability[D]. Colorado: Colorado School of Mines, 1977.
[5]
ROSTAMI J, OZDEMIR L. A new model for performance prediction of hard rock TBMs[C]// Proceedings of the Rapid Excavation and Tunneling Conference. Boston MA: RETC Conference proceedings, 1993: 793–809.
[6]
RICO M. Hard rock tunnel boring: performance predictions and cutter life assessments[D]. Trondheim: Norwegian University of Science and Technology, 2016.
[7]
YAGIZ S, GOKCEOGLU C, SEZER E, et al Application of two non-linear prediction tools to the estimation of tunnel boring machine performance[J]. Engineering Applications of Artificial Intelligence, 2009, 22 (4/5): 808- 814
[8]
ADOKO A C, GOKCEOGLU C, YAGIZ S Bayesian prediction of TBM penetration rate in rock mass[J]. Engineering Geology, 2017, 226: 245- 256
doi: 10.1016/j.enggeo.2017.06.014
[9]
ARMAGHANI D J, MOHAMAD E T, NARAYANASAMY M S, et al Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition[J]. Tunnelling and Underground Space Technology, 2017, 63: 29- 43
doi: 10.1016/j.tust.2016.12.009
[10]
SUN W, SHI M, ZHANG C, et al Dynamic load prediction of tunnel boring machine (TBM) based on heterogeneous in-situ data[J]. Automation in Construction, 2018, 92: 23- 34
doi: 10.1016/j.autcon.2018.03.030
[11]
罗华, 陈祖煜, 龚国芳, 等 基于现场数据的TBM掘进速率研究[J]. 浙江大学学报: 工学版, 2018, 52 (8): 141- 149 LUO Hua, CHEN Zu-yu, GONG Guo-fang, et al Advance rate of TBM based on field boring data[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (8): 141- 149
[12]
张娜, 李建斌, 荆留杰, 等 基于隧道掘进机掘进过程的岩体状态感知方法[J]. 浙江大学学报: 工学版, 2019, 53 (10): 1977- 1985 ZHANG Na, LI Jian-bin, JING Liu-jie, et al Prediction method of rockmass parameters based on tunnelling process of tunnel boring machine[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (10): 1977- 1985
doi: 10.3785/j.issn.1008-973X.2019.10.015
[13]
侯少康, 刘耀儒, 张 凯 基于IPSO-BP混合模型的TBM掘进参数预测[J]. 岩石力学与工程学报, 2020, 39 (8): 1648- 1657 HOU Shao-kang, LIU Yao-ru, ZHANF Kai Prediction of TBM tunnelling parameters based on IPSO-BP hybrid model[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39 (8): 1648- 1657
[14]
YOU S, MA H Manifold topological multi-resolution analysis method[J]. Pattern Recognition, 2011, 44 (8): 1629- 1648
doi: 10.1016/j.patcog.2010.12.023
[15]
ROWEIS S T, SAUL L K Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290 (5500): 2323- 2326
doi: 10.1126/science.290.5500.2323
[16]
HAMILTON W H, DOLLINGER G L Optimizing tunnel boring machine and cutter design for greater boreability[J]. RETC Proceedings, 1979, 1: 280- 296
[17]
SUNDIN N O, WÄNSTEDT S. A boreability model for TBM’s [C]// 1st North American Rock Mechanics Symposium. Austin: American Rock Mechanics Association, 1994.
[18]
NELSON P, THOMAS O R U D, FRED K H Factors affecting TBM penetration rates in sedimentary rocks proceedings[J]. Symposium on Rock Mechanics, 1983, 24: 227- 237
[19]
FUKUI K, OKUBO S Some attempts for estimating rock strength and rock mass classification from cutting force and investigation of optimum operation of tunnel boring machines[J]. Rock Mechanics and Rock Engineering, 2006, 39 (1): 25- 44
doi: 10.1007/s00603-005-0071-6
[20]
龚秋明, 佘祺锐, 侯哲生, 等 高地应力作用下大理岩岩体的TBM掘进试验研究[J]. 岩石力学与工程学报, 2010, 29 (12): 2522- 2532 GONG Qiu-ming, SHE Qi-rui, HOU Zhe-sheng, et al Experimental study of TBM penetration in marble rock mass under high geostress[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29 (12): 2522- 2532