Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (3): 483-490    DOI: 10.3785/j.issn.1008-973X.2021.03.008
    
Prediction of joint roughness coefficient of rock mass based on Boosting-decision tree C5.0
Fa-sheng MIAO(),Yi-ping WU*(),Lin-wei LI,Kang LIAO,Yang XUE
Faculty of Engineering, China University of Geosciences, Wuhan 430074, China
Download: HTML     PDF(1168KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The JRC values of 112 rock joints were collected, including 10 Barton standard profiles, and 8 morphological parameters of each profile were calculated in view of the difficulty and low accuracy for prediction of the current joint roughness coefficient (JRC) quantitative evaluation model. Principal component analysis was used to reduce the dimension of these morphological parameters, and 5 principal components were obtained. 102 groups of profile data were used as training samples, the Boosting-decision tree (DT) C5.0 algorithm was used to build the training model, and Barton 10 standard profiles were used for model verification. The DT C5.0 model, CHAID DT model, support vector machine (SVM) model, and artificial neural network models were selected to verify the prediction accuracy of each model. Results showed that the average error and root mean square error of the Boosting-DT C5.0 model were the least. Established explicit JRC prediction model included 8 layers and 68 nodes.



Key wordsrock joints      roughness coefficient      decision tree C5.0      morphological parameter      prediction     
Received: 15 February 2020      Published: 25 April 2021
CLC:  P 642  
Fund:  国家自然科学基金资助项目(42007267,41977244);国家重点研发计划资助项目(2017YFC1501301)
Corresponding Authors: Yi-ping WU     E-mail: fsmiao@cug.edu.cn;ypwu@cug.edu.cn
Cite this article:

Fa-sheng MIAO,Yi-ping WU,Lin-wei LI,Kang LIAO,Yang XUE. Prediction of joint roughness coefficient of rock mass based on Boosting-decision tree C5.0. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 483-490.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.03.008     OR     http://www.zjujournals.com/eng/Y2021/V55/I3/483


基于Boosting-决策树C5.0的岩体结构面粗糙度预测

针对目前岩体结构面粗糙度系数(JRC)定量评价模型构建困难且预测精度较低的问题,搜集包括10条Barton标准剖面线在内的112条岩体结构面JRC,统计各剖面线的8种形态参数. 采用主成分分析降维处理形态参数,共得到5个主成分. 以前102组剖面线参数作为训练样本,采用Boosting-决策树C5.0算法构建模型,以10条Barton标准剖面线验证模型精度. 对比决策树C5.0模型、CHAID决策树模型、支持向量机(SVM)模型、类神经网络模型,分析各模型预测效果. 结果表明,Boosting-决策树C5.0模型的预测结果平均误差、均方根误差均最小. 建立的显式JRC预测模型,包含8层共计68节点的判别阈值.


关键词: 岩体结构面,  粗糙度系数,  决策树C5.0,  形态参数,  预测 
Fig.1 Plot of reference coordinate system
Fig.2 JRC and morphological parameters of rock joints
Fig.3 Training and prediction flow chart of decision tree model
Fig.4 Flow chart of Decision Tree C5.0 model
Fig.5 Training and prediction results of Boosting-DT C5.0
Fig.6 Comparison of prediction results of each model
模型 R2 /% E1 /% Ea MSE RMSE
Boosting-DT C5.0 95.19 100 0.06 0.186 0.432
DT C5.0 92.27 100 0.51 0.481 0.694
CHAID DT 93.62 100 0.24 0.328 0.573
SVM 94.10 100 0.28 0.280 0.529
ANN 89.94 75 0.38 0.815 0.903
Tab.1 Comparison of prediction results of each model
[1]   BARTON N Review of a new shear-strength criterion for rock joints[J]. Engineering Geology, 1973, 7 (4): 287- 332
doi: 10.1016/0013-7952(73)90013-6
[2]   BARTON N, CHOUBEY V The shear strength of rock joints in theory and practice[J]. Rock Mechanics, 1977, 10 (1): 1- 54
[3]   BARTON N Suggested methods for the quantitative description of discontinuities in rock masses[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1978, 15 (6): 319- 368
doi: 10.1016/0148-9062(78)91472-9
[4]   PATTON F D. Multiple modes of shear failure in rock [C]// 1st ISRM Congress. Lisbon: ISRM, 1966.
[5]   MYERS N O Characterization of surface roughness[J]. Wear, 1962, 5 (3): 182- 189
doi: 10.1016/0043-1648(62)90002-9
[6]   TSE R, CRUDEN D M Estimating joint roughness coefficients[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1979, 16 (5): 303- 307
doi: 10.1016/0148-9062(79)90241-9
[7]   YU X B, VAYSSADE B Joint profiles and their roughness parameters[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1991, 28 (4): 333- 336
doi: 10.1016/0148-9062(91)90598-G
[8]   YANG Z Y, LO S C, DI C C Reasessing the joint roughness coefficient (JRC) estimation using Z2[J]. Rock Mechanics and Rock Engineering, 2001, 34 (3): 243- 251
doi: 10.1007/s006030170012
[9]   LI Y, XU Q, AYDIN A Uncertainties in estimating the roughness coeffcient of rock fracture surfaces[J]. Bulletin of Engineering Geology and the Environment, 2017, 76 (3): 1153- 1165
doi: 10.1007/s10064-016-0994-z
[10]   BARTON N. Modelling rock joint behavior from in situ block tests: implications for nuclear waste reposotory design, ONWI-308 [R]. Salt Lake City: Terra Tek, Inc., 1982.
[11]   ZHANG G, KARAKUS M, TANG H, et al A new method estimating the 2D joint roughness coefficient for discontinuity surfaces in rock masses[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 72 (12): 191- 198
[12]   葛云峰, 唐辉明, 黄磊, 等 岩体结构面三维粗糙度系数表征新方法[J]. 岩石力学与工程学报, 2012, 31 (12): 2508- 2517
GE Yun-feng, TANG Hui-ming, HUANG Lei, et al A new representation method for three-dimensional joint roughness coefficient of rock mass discontinuities[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31 (12): 2508- 2517
[13]   陈世江, 朱万成, 王创业, 等 考虑各向异性特征的三维岩体结构面峰值剪切强度研究[J]. 岩石力学与工程学报, 2016, 35 (10): 2013- 2021
CHEN Shi-jiang, ZHU Wan-cheng, WANG Chuang-ye, et al Peak shear strength of 3D rock discontinuities based on anisotropic properties[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35 (10): 2013- 2021
[14]   陈世江. 基于数字图像处理的岩体结构面粗糙度三维表征方法及其应用[D]. 沈阳: 东北大学, 2015.
CHEN Shi-jiang. Characterization of 3-D rock discontinuities roughness based on digital image processing technique and its application [D]. Shenyang: Northeastern University, 2015.
[15]   陈世江, 朱万成, 张敏思, 等 基于数字图像处理技术的岩石节理分形描述[J]. 岩土工程学报, 2012, 34 (11): 2087- 2092
CHEN Shi-jiang, ZHU Wan-cheng, ZHANG Min-si, et al Fractal description of rock joints based on digital image processing technique[J]. Chinese Journal of Geotechnical Engineering, 2012, 34 (11): 2087- 2092
[16]   蔡毅, 唐辉明, 葛云峰, 等 岩体结构面三维粗糙度评价的新方法[J]. 岩石力学与工程学报, 2017, 36 (5): 1101- 1110
CAI Yi, TANG Hui-ming, GE Yun-feng, et al A new method for evaluating the roughness of three-dimensional discontinuity surface of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36 (5): 1101- 1110
[17]   WANG L, WANG C, KHOSHNEVISAN S, et al Determination of two-dimensional joint roughness coefficient using support vector regression and factor analysis[J]. Engineering Geology, 2017, 231: 238- 251
doi: 10.1016/j.enggeo.2017.09.010
[18]   王昌硕, 王亮清, 葛云峰, 等 基于统计参数的二维节理粗糙度系数非线性确定方法[J]. 岩土力学, 2017, 38 (2): 565- 573
WANG Chang-shuo, WANG Liang-qing, GE Yun-feng, et al A nonlinear method for determining two-dimensional joint roughness coefficient based on statistical parameters[J]. Rock and Soil Mechanics, 2017, 38 (2): 565- 573
[19]   宋康明, 姜阳厚, 谭志祥, 等 基于随机森林方法的岩石节理粗糙度系数研究[J]. 地质科技情报, 2018, 37 (3): 263- 267
SONG Kang-ming, JIANG Yang-hou, TAN Zhi-xiang, et al Method to calculate the joint roughness coefficient based on random forest[J]. Geological Science and Technology Information, 2018, 37 (3): 263- 267
[20]   王朋伟. 库水作用下滑坡变形演化规律研究[D]. 北京: 中国地质大学, 2012.
WANG Peng-wei. Study on the law of deformation evolution of landslide under the action of reservoir water [D]. Beijing: China University of Geosciences, 2012.
[21]   乔建平, 黄栋, 李倩倩 基于决策树模型的抗滑桩破坏概率[J]. 中国地质灾害与防治学报, 2014, 25 (4): 6- 10
QIAO Jian-ping, HUANG Dong, LI Qian-qian Failure probability of anti-slide pile based on decision tree method[J]. The Chinese Journal of Geological Hazard and Control, 2014, 25 (4): 6- 10
[22]   王正海, 方臣, 何凤萍, 等 基于决策树多分类支持向量机岩性波谱分类[J]. 中山大学学报: 自然科学版, 2014, 53 (6): 93- 97
WANG Zheng-hai, FANG Chen, HE Feng-ping, et al Hyperspectral rock spectral classification based on the decision tree-support vector machine (DT-SVMs)[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2014, 53 (6): 93- 97
[23]   陈顺满, 吴爱祥, 王贻明, 等 基于决策树模型的岩爆烈度预测[J]. 武汉科技大学学报, 2016, 39 (3): 195- 199
CHEN Shun-man, WU Ai-xiang, WANG Yi-ming, et al Prediction of rock burst intensity based on decision tree model[J]. Journal of Wuhan University of Science and Technology, 2016, 39 (3): 195- 199
[24]   MAERZ N, NANNI A, MYERS J, et al Laser profilometry for concrete substrate characterization prior to FRP laminate application[J]. Concrete Repair Bulletin, 2001, 14 (3): 4- 8
[1] Jia-hui XU,Jing-chang WANG,Ling CHEN,Yong WU. Surface water quality prediction model based on graph neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 601-607.
[2] Yong YU,Jing-yuan XUE,Sheng DAI,Qiang-wei BAO,Gang ZHAO. Quality prediction and process parameter optimization method for machining parts[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 441-447.
[3] Yi-zhe MAO,Guo-fang GONG,Xing-hai ZHOU,Fei WANG. Identification of TBM surrounding rock based on Markov process and deep neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 448-454.
[4] Fa-ming HUANG,Zhong-shan CAO,Chi YAO,Qing-hui JIANG,Jia-wu CHEN. Landslides hazard warning based on decision tree and effective rainfall intensity[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 472-482.
[5] You-kang DUAN,Xiao-gang CHEN,Jian GUI,Bin MA,Shun-fen LI,Zhi-tang SONG. Continuous kinematics prediction of lower limbs based on phase division[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 89-95.
[6] Wei-qi CHEN,Jing-chang WANG,Ling CHEN,Yong-qin YANG,Yong WU. Prediction model of multi-factor aware mobile terminal replacement based on deep neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 109-115.
[7] Wen-shu LI,Tao-tao ZOU,Hong-yan WANG,Hai HUANG. Traffic accident quantity prediction model based on dual-scale long short-term memory network[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1613-1619.
[8] Dong-dong JIANG,Dao-fei LI,Xiao-li YU. Model predictive control energy management based ondriver demand torque prediction[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1325-1334.
[9] Chen-lin WANG,Jie YANG,Wen-jun JU,Fu GU,Ji-xi CHEN,Yang-jian JI. Short term load forecasting and peak shaving optimization based on intelligent home appliance[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1418-1424.
[10] Xu YAN,Xiao-liang FAN,Chuan-pan ZHENG,Yu ZANG,Cheng WANG,Ming CHENG,Long-biao CHEN. Urban traffic flow prediction algorithm based on graph convolutional neural networks[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1147-1155.
[11] Chuang LIU,Jun LIANG. Vehicle motion trajectory prediction based on attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1156-1163.
[12] Ping YANG,Dan WANG,Zi-jian KAGN,Tong LI,Li-hua FU,Yue-ren YU. Prediction model of paroxysmal atrial fibrillation based on pattern recognition and ensemble CNN-LSTM[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 1039-1048.
[13] Fei WANG,Guo-fang GONG,Li-wen DUAN,Yong-feng QIN. XGBoost based intelligent determination system design of tunnel boring machine operation parameters[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 633-641.
[14] Ya-jing WANG,Qun WANG,Bo-wen LI,Zhi-wen LIU,Yuan-yuan PIAO,Tao YU. Seizure prediction based on pre-ictal period selection of EEG signal[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2258-2265.
[15] Hua HUANG,Wen-qiang DENG,Yuan LI,Run-lan GUO. Mass matching design of machine tool parts based on spatial dynamics optimization[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2009-2017.