|
|
Landslides hazard warning based on decision tree and effective rainfall intensity |
Fa-ming HUANG(),Zhong-shan CAO,Chi YAO(),Qing-hui JIANG,Jia-wu CHEN |
1. School of Civil Engineering and Architecture, Nanchang University, Nanchang 330031 2. School of Civil Engineering, Wuhan University, Wuhan, 430000 |
|
|
Abstract Information value (IV), back-propagation neural network (BPNN) and C5.0 decision tree models were used to implement landslide susceptibility prediction (LSP) for comparisons by taking the Xunwu County of Jiangxi Province as a case, EI-D model was proposed to calculate the critical rainfall thresholds of these landslides based on the concept of early effective rainfall. The results of EI-D were compared with the results of conventional I-D model for uncertainty analysis. LSP results were coupled with the EI-D model to realize the landslides hazard warning with the warning accuracy further verified. Results show that the C5.0 decision tree has higher LSP accuracy than BPNN, followed by IV model. The temporal probability prediction accuracy of EI-D model is superior to the I-D model. The present model based on LSP and EI-D can effectively achieve real-time rainfall-induced landslides early warning.
|
Received: 18 January 2020
Published: 25 April 2021
|
|
Fund: 国家自然科学基金资助项目(41807285,41762020,51879127,51769014);中国博士后基金资助项目(2019M652287);江西省自然科学基金资助项目(20192BAB216034,20192ACB2102,20192ACB20020);江西省博士后基金资助项目(2019KY08) |
Corresponding Authors:
Chi YAO
E-mail: faminghuang@ncu.edu.cn;chi.yao@ncu.edu.cn
|
基于决策树和有效降雨强度的滑坡危险性预警
以江西省寻乌县为例,采用信息量(IV)、反向传播神经网络(BPNN)和C5.0决策树模型进行滑坡易发性预测(LSP),比较不同模型的预测性能;基于有效降雨量的概念提出有效降雨强度-历时(EI-D)模型,计算滑坡临界降雨阈值并将其与传统的降雨强度-历时(I-D)阈值做对比;将LSP结果与EI-D模型耦合,实现滑坡灾害预警并进一步验证了预警精度. 结果表明:C5.0决策树的LSP精度高于BPNN和IV,EI-D阈值的预测效果优于I-D模型,且基于滑坡易发性和EI-D阈值的模型能有效实现降雨型滑坡的实时预报.
关键词:
降雨型滑坡,
滑坡危险性预警,
滑坡易发性预测(LSP),
有效降雨强度,
C5.0决策树
|
|
[1] |
黄发明, 殷坤龙, 张桂荣, 等 多变量PSO-SVM模型预测滑坡地下水位[J]. 浙江大学学报: 工学版, 2015, 49 (6): 1193- 1200 HUANG Fa-ming, YIN Kun-long, ZHANG Gui-rong, et al Prediction of groundwater level in landslide using multivariable PSO-SVM model[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (6): 1193- 1200
|
|
|
[2] |
HUANG F, YIN K, HUANG J, et al Landslide susceptibility mapping based on self-organizing-map network and extreme learning machine[J]. Engineering Geology, 2017, 223: 11- 22
doi: 10.1016/j.enggeo.2017.04.013
|
|
|
[3] |
黄发明, 殷坤龙, 张桂荣, 等 基于相空间重构和小波分析-粒子群向量机的滑坡地下水位预测[J]. 地球科学: 中国地质大学学报, 2015, 40 (7): 1254- 1265 HUANG Fa-ming, YIN Kun-long, ZHANG Gui-rong, et al Landslide groundwater level time series prediction based on phase space reconstruction and wavelet analysis-support vector machine optimized by PSO algorithm[J]. Earth Science: Journal of China University of Geosciences, 2015, 40 (7): 1254- 1265
doi: 10.3799/dqkx.2015.105
|
|
|
[4] |
刘永莉, 孙红月, 于洋, 等 基于BOTDR监测技术抗滑桩上滑坡推力确定[J]. 浙江大学学报: 工学版, 2012, 46 (5): 798- 803 LIU Yong-li, SUN Hong-yue, YU Yang, et al Determining landslide thrust on anti-sliding pile by BOTDR monitoring technology[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (5): 798- 803
|
|
|
[5] |
GUO Z, YIN K, GUI L, et al Regional rainfall warning system for landslides with creep deformation in Three Gorges using a statistical black box model[J]. Scientific Reports, 2019, 9 (1): 8962
doi: 10.1038/s41598-019-45403-9
|
|
|
[6] |
LI D, HUANG F, YAN L, et al Landslide susceptibility prediction using particle-swarm-optimized multilayer perceptron: comparisons with multilayer-perceptron-only, BP neural network, and information value models[J]. Applied Science, 2019, 9 (18): 3664
doi: 10.3390/app9183664
|
|
|
[7] |
HUANG F, CAO Z, GUO J, et al Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping[J]. Catena, 2020, 191: 104580
doi: 10.1016/j.catena.2020.104580
|
|
|
[8] |
WANG?L?J,?SAWADA?K,?MORIGUCHI?S.?Landslide-susceptibility analysis ?using ?light ?detection ?and ?ranging-derived digital elevation?models?and?logistic?regression?models:?a?case?study?inMizunami?City,?Japan [EB/OL]. [2020-01-10]. http://socolar.com/Article/Index?=100028583553&jid=100000013536.
|
|
|
[9] |
ZHU L, HUANG L, FAN L, et al Landslide susceptibility prediction modeling based on remote sensing and a novel deep learning algorithm of a cascade-parallel recurrent neural network[J]. Sensors (Basel), 2020, 20 (6): 1576
doi: 10.3390/s20061576
|
|
|
[10] |
CHANG Z, DU Z, ZHANG F, et al Landslide susceptibility prediction based on remote sensing images and GIS: comparisons of supervised and unsupervised machine learning models[J]. Remote Sensing, 2020, 12 (3): 502
doi: 10.3390/rs12030502
|
|
|
[11] |
周超, 殷坤龙, 黄发明 混沌序列WA-ELM耦合模型在滑坡位移预测中的应用[J]. 岩土力学, 2015, 36 (9): 2674- 2680 ZHOU Chao, YIN Kun-long, HUANG Fa-ming Application of the chaotic sequence WA-ELM coupling model in landslide displacement prediction[J]. Rock and Soil Mechanics, 2015, 36 (9): 2674- 2680
|
|
|
[12] |
MA J, TANG H, LIU X, et al Establishment of a deformation forecasting model for a step-like landslide based on decision tree C5.0 and two-step cluster algorithms: a case study in the Three Gorges Reservoir area, China[J]. Landslides, 2017, 14 (3): 1275- 1281
doi: 10.1007/s10346-017-0804-0
|
|
|
[13] |
SEGONI S, PICIULLO L, GARIANO S L A review of the recent literature on rainfall thresholds for landslide occurrence[J]. Landslides, 2018, 15 (8): 1483- 1501
doi: 10.1007/s10346-018-0966-4
|
|
|
[14] |
GUZZETTI F, REICHENBACH P, CARDINALI M, et al Probabilistic landslide hazard assessment at the basin scale[J]. Geomorphology, 2005, 72 (1-4): 272- 299
doi: 10.1016/j.geomorph.2005.06.002
|
|
|
[15] |
桂蕾. 三峡库区万州区滑坡发育规律及风险研究[J]. 北京: 中国地质大学, 2014. GUI Lei. Research on landslide development regularities and risk in Wan Zhou District, Three Gorges Reservoir [D]. Beijing: China University of Geoscience, 2014.
|
|
|
[16] |
ZHAN L T, LI H, CHEN Y M, et al Parametric analyses of intensity-duration curve for predicting rainfall-induced landslides in residual soil slope in Southeastern coastal areas of China[J]. Rock and Soil Mechanics, 2012, 33 (3): 872- 880
|
|
|
[17] |
陈洪凯, 魏来, 谭玲 降雨型滑坡经验性降雨阈值研究综述[J]. 重庆交通大学学报: 自然科学版, 2012, 31 (5): 990- 996 CHEN Hong-kai, WEI Lai, TAN Ling Review of research on empirical rainfall threshold of rainfall-induced landslide[J]. Journal of Chongqing Jiaotong University: Natural Sciences, 2012, 31 (5): 990- 996
|
|
|
[18] |
MATHEW J, BABU D G, KUNDU S, et al Integrating intensity–duration-based rainfall threshold and antecedent rainfall-based probability estimate towards generating early warning for rainfall-induced landslides in parts of the Garhwal Himalaya, India[J]. Landslides, 2013, 11 (4): 575- 588
|
|
|
[19] |
鲍其云, 麻土华, 李长江, 等 浙江62个丘陵山区县引发滑坡的降雨强度——历时阈值[J]. 科技通报, 2016, 32 (5): 48- 55 BAO Qi-yun, MA Tu-hua, LI Chang-jiang, et al Rainfall intensity-duration thresholds for the initiation of landslides in 62 hilly and mountainous counties of Zhejiang Province[J]. Bulletin of Science and Technology, 2016, 32 (5): 48- 55
|
|
|
[20] |
ROSSI M, LUCIANI S,VALIGI D, et al Statistical approaches for the definition of landslide rainfall thresholds and their uncertainty using rain gauge and satellite data[J]. Geomorphology, 2017, 285: 16- 27
doi: 10.1016/j.geomorph.2017.02.001
|
|
|
[21] |
吴益平, 张秋霞, 唐辉明, 等 基于有效降雨强度的滑坡灾害危险性预警[J]. 地球科学: 中国地质大学学报, 2014, 39 (7): 889- 895 WU Yi-ping, ZHANG Qiu-xia, TANG Hui-ming, et al Landslide hazard warning based on effective rainfall intensity[J]. Earth Science: Journal of China University of Geosciences, 2014, 39 (7): 889- 895
doi: 10.3799/dqkx.2014.083
|
|
|
[22] |
HUANG Y, ZHAO L Review on landslide susceptibility mapping using support vector machines[J]. Catena, 2018, 165: 520- 529
doi: 10.1016/j.catena.2018.03.003
|
|
|
[23] |
LIU W, LUO X, HUANG F, et al Uncertainty of the soil–water characteristic curve and its effects on slope seepage and stability analysis under conditions of rainfall using the Markov chain Monte Carlo method[J]. Water, 2017, 9 (10): 758
|
|
|
[24] |
刘长殿, 孙红月, 康剑伟, 等 土体的充气阻渗试验[J]. 浙江大学学报: 工学版, 2014, 48 (2): 236- 241 LIU Chang-dian, SUN Hong-yue, KANG Jian-wei, et al Experimental investigation of seepage barrier effect by air-inflation in soil[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (2): 236- 241
|
|
|
[25] |
YANG H, WEI F, MA Z, et al Rainfall threshold for landslide activity in Dazhou, southwest China[J]. Landslides, 2020, 17 (1): 61- 77
|
|
|
[26] |
王芳, 殷坤龙, 桂蕾, 等 不同日降雨工况下万州区滑坡灾害危险性分析[J]. 地质科技情报, 2018, 37 (1): 190- 195 WANG Fang, YIN Kun-long, GUI Lei, et al Landslide hazard analysis under different daily rainfall conditions in Wanzhou District[J]. Geological Science and Technology Information, 2018, 37 (1): 190- 195
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|