|
|
Bidding strategy of wind farm participation in frequency regulation market considering wind power uncertainty |
Xi-yun YANG1(),Ya-xin LIU1,Wen-bing MA1,Guo-tong XING2,Feng GAO1 |
1. School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China 2. Zhengzhou Branch, China Nuclear Power Engineering Limited Company, Zhengzhou 450052, China |
|
|
Abstract The day-ahead bidding method of wind farms participation in the energy market and frequency regulation (FR) market was proposed in order to solve the problem that large-scale wind power integration on power system can increase the FR demand of the power system. The revenue mechanisms of wind farms in the energy market and FR market were analyzed. The frequency regulation performance index (FRPI) was considered in the FR market revenue, and the evaluation method of FRPI was proposed. The bidding strategy of wind farms participating in the energy and FR (E&FR) markets was analyzed. The wind power probability density prediction model KELM-PSO-KDE was established by using the kernel extreme learning machine (KELM) and the kernel density estimation (KDE). An optimization model for the wind farm participating in the E&FR markets was established with the goal of maximizing the wind farm revenue based on the probability density prediction results of wind power. The ant lion optimizer (ALO) algorithm was used to solve the optimization model in order to obtain the day-ahead optimal bidding power for the wind farm participating in the E&FR markets. The simulation results based on the actual wind farm data show that the bidding strategy for wind farms in the E&FR markets can help wind farms to obtain more revenue, and help the power system to relieve the FR pressure. The bidding strategy has more advantages and universality.
|
Received: 08 May 2021
Published: 24 April 2022
|
|
Fund: 国家自然科学基金资助项目(51677067) |
考虑风电不确定性的风电场参与调频市场投标策略
针对风电大规模并网将增加电网调频需求的问题,提出考虑风电不确定性的风电机组同时参与能量市场与调频市场的日前投标方法.分析风电场在2种市场中的收益机制,在调频市场收益中考虑调频性能指标(FRPI),提出调频性能指标的估值方法. 分析风电场参与2种市场的投标策略. 利用核极限学习机(KELM)和核密度估计(KDE),建立风电功率概率预测模型KELM-PSO-KDE.基于功率概率密度的预测结果,以风电场收益最大为目标函数建立优化模型,利用蚁狮优化(ALO)算法求解该模型,得到风电场同时参与2种市场的日前最优投标功率. 风电场真实数据的仿真表明,提出的风电场同时参与2种市场的投标策略,可以使风场侧获得更大收益,有助于缓解电网的调频压力,具有优越性和普适性.
关键词:
风电,
能量市场,
调频市场,
风功率预测,
投标策略,
蚁狮优化算法,
调频性能指标(FRPI)
|
|
[1] |
崔达, 史沛然, 陈启鑫, 等 风电参与能量—调频联合市场的优化策略[J]. 电力系统自动化, 2016, 40 (13): 5- 12 CUI Da, SHI Pei-ran, CHEN Qi-xin, et al Optimal strategy for wind power bidding in energy and frequency regulation markets[J]. Automation of Electric Power System, 2016, 40 (13): 5- 12
doi: 10.7500/AEPS20151112004
|
|
|
[2] |
LIANG J, GRIJALVA S, HARLEY R G Increased wind revenue and system security by trading wind power in energy and regulation reserve markets[J]. IEEE Transactions on Sustainable Energy, 2011, 2 (3): 340- 347
doi: 10.1109/TSTE.2011.2111468
|
|
|
[3] |
SHAFIE-KHAH M, DE L, CATALAO J, et al. Optimal self-scheduling of a wind power producer in energy and ancillary services markets using a multi-stage stochastic programming [C]// Smart Grid Conference. Tehran: IEEE, 2014: 1-5.
|
|
|
[4] |
SOARES T, PINSON P, JENSEN T V, et al Optimal offering strategies for wind power in energy and primary reserve markets[J]. IEEE Transactions on Sustainable Energy, 2016, 7 (3): 1036- 1045
doi: 10.1109/TSTE.2016.2516767
|
|
|
[5] |
WANG Y Evaluation de la performance des réglages de fréquence des Eoliennes à l'Echelle du système electrique: application à un cas insulaire[J]. Ecole Centrale de Lille, 2013, 5 (6): 1- 10
|
|
|
[6] |
WANG Y, BAYEM H, GIRALT-DEVANT M, et al Methods for assessing available wind primary power reserve[J]. IEEE Transactions on Sustainable Energy, 2015, 6 (1): 272- 280
doi: 10.1109/TSTE.2014.2369235
|
|
|
[7] |
KIRBY B, TUOHY A. Profitability of wind plants providing ancillary services: regulation and spinning reserve [DB/OL]. (2013-03-10). http://www.nrel.gov/electricity/transmission/pdfs/wind_workshop2_ 24kirby.pdf.
|
|
|
[8] |
范高锋, 裴哲义, 辛耀中 风电功率预测的发展现状与展望[J]. 中国电力, 2011, 44 (6): 43- 46 FAN Gao-feng, PEI Zhe-yi, XIN Yao-zhong Wind power prediction achievement and prospect[J]. Electric Power, 2011, 44 (6): 43- 46
|
|
|
[9] |
张国全, 王秀丽, 王锡凡 电力市场中旋转备用的效益和成本分析[J]. 电力系统自动化, 2000, 24 (21): 14- 18 ZHANG Guo-quan, WANG Xiu-li, WANG Xi-fan Study on benefits and costs of spinning reserve capacity in power market[J]. Automation of Electric Power Systems, 2000, 24 (21): 14- 18
doi: 10.3321/j.issn:1000-1026.2000.21.004
|
|
|
[10] |
HUANG G B, ZHU Q Y, SIEW C K Extreme learning machine: a new learning scheme of feedforward neural networks[J]. Proceeding International Joint Conference on Neural Networks, 2004, 2 (1): 985- 990
|
|
|
[11] |
EBERHART R C, SHI Y. Particle swarm optimization: developments, applications and resources [C]// Congress on Evolutionary Computation. Honolulu: IEEE, 2002: 81-86.
|
|
|
[12] |
张丽平. 粒子群优化算法的理论及实践[D]. 浙江: 浙江大学, 2005. ZHANG Li-ping. The theory and practice upon the particle swarm optimization algorithm [D]. Zhejiang: Zhejiang University, 2005.
|
|
|
[13] |
ZHANG Y, WANG J, LUO X Probabilistic wind power forecasting based on logarithmic transformation and boundary kernel[J]. Energy Conversion and Management, 2015, 96 (1): 440- 451
|
|
|
[14] |
刘颖明, 王瑛玮, 王晓东, 等 基于蚁狮算法的风电集群储能容量配置优化方法[J]. 太阳能学报, 2021, 42 (1): 431- 437 LIU Ying-ming, WANG Ying-wei, WANG Xiao-dong, et al Optimization of storage capacity allocation in wind farm cluster based on ant lion optimization algorithm[J]. Acta Energiae Solaris Sinica, 2021, 42 (1): 431- 437
|
|
|
[15] |
MIRJALILI S The ant lion optimizer[J]. Advances in Engineering Software, 2015, 83: 80- 98
doi: 10.1016/j.advengsoft.2015.01.010
|
|
|
[16] |
张振兴, 杨任农, 房育寰 自适应 Tent 混沌搜索的蚁狮优化算法[J]. 哈尔滨工业大学学报, 2018, 50 (5): 152- 159 ZHANG Zhen-xing, YANG Ren-nong, FANG Yu-huan Ant lion optimization algorithm based on self-adaptive tent chaos search[J]. Journal of Harbin Institute of Technology, 2018, 50 (5): 152- 159
doi: 10.11918/j.issn.0367-6234.201706044
|
|
|
[17] |
陈达鹏, 荆朝霞 美国调频辅助服务市场的调频补偿机制分析[J]. 电力系统自动化, 2017, 41 (18): 1- 9 CHEN Da-peng, JING Zhao-xia Analysis of frequency modulation compensation mechanism in frequency modulation ancillary service market of the United States[J]. Automation of Electric Power Systems, 2017, 41 (18): 1- 9
doi: 10.7500/AEPS20170406002
|
|
|
[18] |
国家发展改革委. 国家发展改革委关于完善风电上网电价政策的通知[EB/OL]. (2019-05-21). https://zhidao.baidu.com/question/502804385.html. National Development and Reform Commission. Notice of the national development and reform commission on the improvement of wind power tariff policy [EB/OL]. (2019-05-21). https://zhidao.baidu.com/question/502804385.html.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|