|
|
Breast cancer pathological image classification based on Cycle-GAN and improved DPN network |
Xue-qin ZHANG( ),Tian-ren LI |
School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200000, China |
|
|
Abstract An algorithm framework based on cycle-consistent adversarial network (Cycle-GAN) and improved dual path network (DPN) was proposed aiming at the uneven staining of pathological images and the difficulty in distinguishing between benign and malignant. Cycle-GAN was used for color normalization in order to solve the problem of low accuracy of the detection model caused by uneven staining of pathological images. The mechanism of adding small convolution, deconvolution and attention was adopted based on the DPN network by overlapping and slicing the image. The model’s ability to classify pathological image texture features was enhanced. The experimental results on the BreaKHis dataset show that the proposed algorithm effectively improves the accuracy of the classification of benign and malignant breast cancer pathological images.
|
Received: 20 May 2021
Published: 24 April 2022
|
|
基于Cycle-GAN和改进DPN网络的乳腺癌病理图像分类
针对病理图像染色不均匀及良恶性难以鉴别的问题,提出基于Cycle-GAN和改进的双路径网络(DPN)的算法框架. 利用Cycle-GAN进行颜色归一化处理,解决因病理图像染色不均匀导致的检测模型精度偏低问题,通过对图像进行重叠切片,基于DPN网络采用增加小卷积、反卷积和注意力机制,增强模型对病理图像纹理特征的分类能力. 在BreaKHis数据集上的实验结果表明,所提算法有效提高了乳腺癌病理图像良恶性分类的准确性.
关键词:
乳腺癌病理图像分类,
深度学习,
Cycle-GAN网络,
双路径网络(DPN),
注意力机制
|
|
[1] |
CHEN W, ZHENG R, BAADE P, et al Cancer Statistics in China, 2015[J]. CA: A Cancer Journal for Clinicians, 2016, 66 (2): 115- 132
doi: 10.3322/caac.21338
|
|
|
[2] |
KOWAL M, FILIPCZUK P, OBUCHOWICZ A, et al Computer-aided diagnosis of breast cancer based on fine needle biopsy microscopic images[J]. Computers in Biology and Medicine, 2013, 43 (10): 1563- 1572
doi: 10.1016/j.compbiomed.2013.08.003
|
|
|
[3] |
ISABEL G, POLONIA A, SARMIENTO A, et al Automatic classification of tissue malignancy for breast carcinoma diagnosis[J]. Computers in Biology and Medicine, 2018, 96: 41- 51
doi: 10.1016/j.compbiomed.2018.03.003
|
|
|
[4] |
ABDULLAH-AL N, YINAN K Histopathological breast-image classification using concatenated R-G-B histogram information[J]. Annals of Data Science, 2019, 6 (3): 513- 529
doi: 10.1007/s40745-018-0162-3
|
|
|
[5] |
WANG P, HU X, LI Y, et al Automatic cell nuclei segmentation and classification of breast cancer histopathology images[J]. Signal Processing, 2016, 122: 1- 13
doi: 10.1016/j.sigpro.2015.11.011
|
|
|
[6] |
SPANHOL F, OLIVEIRA L, PETITJEAN C, et al A dataset for breast cancer histopathological image classification[J]. IEEE Transactions on Biomedical Engineering, 2016, 63 (7): 1455- 1462
doi: 10.1109/TBME.2015.2496264
|
|
|
[7] |
VETA M, PLUIM J, VAN D, et al Breast cancer histopathology image analysis: a rcview[J]. IEEE Transactions on Biomedical Engineering, 2014, 61 (5): 1400- 1411
doi: 10.1109/TBME.2014.2303852
|
|
|
[8] |
SHEN D, WU G, SUK H Deep learning in medical image analysis[J]. Annual Review of Biomedical Engineering, 2017, 19 (1): 221- 248
doi: 10.1146/annurev-bioeng-071516-044442
|
|
|
[9] |
SPANHOL F, OLIVEIRA L, PETITJEAN C, et al. Breast cancer histopathological image classification using convolutional neural networks [C]// Proceedings of 2016 International Joint Conference on Neural Networks. Vancouver: IEEE, 2016: 2560-2567.
|
|
|
[10] |
BAYRAMOGLU N, KANNALA J, JANNE H. Deep learning for magnification independent breast cancer histopathology image classification [C]// Proceedings of International Conference on Pattern Recognition. Cancun: IEEE, 2016: 2441-2446.
|
|
|
[11] |
何雪英, 韩忠义, 魏本征 基于深度学习的乳腺癌病理图像自动分类[J]. 计算机工程与应用, 2018, 54 (12): 121- 125 HE Xue-ying, HAN Zhong-yi, WEI Ben-zheng Breast cancer histopathological image auto-classification using deep learning[J]. Computer Engineering and Applications, 2018, 54 (12): 121- 125
doi: 10.3778/j.issn.1002-8331.1701-0392
|
|
|
[12] |
明涛, 王丹, 郭继昌, 等 基于多尺度通道重校准的乳腺癌病理图像分类[J]. 浙江大学学报:工学版, 2020, 54 (7): 1289- 1297 MING Tao, WANG Dan, GUO Ji-chang, et al Breast cancer histopathological image classification using multi-scale channel squeeze-and-excitation model[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (7): 1289- 1297
|
|
|
[13] |
邹文凯, 陆慧娟, 叶敏超, 等 基于卷积神经网络的乳腺癌组织病理图像分类[J]. 计算机工程与设计, 2020, 41 (6): 1749- 1754 ZOU Wen-kai, LU Hui-juan, YE Min-chao, et al Breast cancer histopathological image classification using convolutional neural network[J]. Computer Engineering and Design, 2020, 41 (6): 1749- 1754
|
|
|
[14] |
NAHID A, MEHRABI M, KONG Y. Frequency-domain information along with LSTM and GRU methods for histopathological breast-image classification [C]//International Symposium on Signal Processing and Information Technology. Bilbao: IEEE, 2017: 410-415.
|
|
|
[15] |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks [C]// Advances in Neural Information Processing Systems. Montreal: MIT Press, 2014: 2672-2680.
|
|
|
[16] |
ZHU J, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks [C]// International Conference On Computer Vision. Venice: IEEE, 2017: 2242-2251.
|
|
|
[17] |
HUANG G, LIU Z, LAURENS V, et al. Densely connected convolutional networks [C]// Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2261-2269.
|
|
|
[18] |
CHEN Y, LI J, XIAO H, et al. Dual path networks [C]// Conference on Neural Information Processing Systems. Long Beach: IEEE, 2017: 1-9.
|
|
|
[19] |
JIE H, LI S, GANG S, et al Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 42 (99): 2011- 2023
|
|
|
[20] |
SHORTEN C, KHOSHGOFTAAR T A survey on image data augmentation for deep learning[J]. Journal of Big Data, 2019, 6 (1): 1- 48
doi: 10.1186/s40537-018-0162-3
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|