Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (9): 1643-1651    DOI: 10.3785/j.issn.1008-973X.2021.09.005
    
Attention convolutional GRU-based autoencoder and its application in industrial process monitoring
Xing LIU(),Jian-bo YU*()
School of Mechanical Engineering, Tongji University, Shanghai 201804, China
Download: HTML     PDF(1133KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A new deep neural network with attention convolutional gated recurrent unit-based autoencoder (CGRUA-AE) and a process fault detection method based on CGRUA-AE were proposed aiming at the problem that the existing fault detection algorithms were difficult to extract the internal information of data deeply and accurately. First, a convolutional gated recurrent unit (ConvGRU) was effectively extracted the spatial and temporal features of input data. Secondly, an auto-encoder based on ConvGRU was established, using unsupervised learning to extract features from time series data, introducing an attention mechanism to calculate the weight of corresponding features to realize the effective selection of key features. Finally, the process monitoring model based on $ {T}^{2} $ and SPE statistics were established in feature space and residual space respectively to realizes effective feature extraction and fault detection for multivariate data. Numerical case and Tennessee-Eastman process fault detection results show that CGRUA-AE has good feature extraction ability and fault detection ability, and its performance is superior to the common process fault detection methods.



Key wordsprocess monitoring      fault detection      deep learning      autoencoder      convolutional gated recurrent unit (ConvGRU)      attention     
Received: 24 August 2020      Published: 20 October 2021
CLC:  TP 277  
Fund:  国家自然科学基金资助项目 (71771173);上海市科学技术委员会“科技创新行动计划”高新技术领域资助项目(19511106303)
Corresponding Authors: Jian-bo YU     E-mail: 953465408@qq.com;jbyu@tongji.edu.cn
Cite this article:

Xing LIU,Jian-bo YU. Attention convolutional GRU-based autoencoder and its application in industrial process monitoring. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1643-1651.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.09.005     OR     https://www.zjujournals.com/eng/Y2021/V55/I9/1643


注意力卷积GRU自编码器及其在工业过程监控的应用

针对现有故障检测算法难以深入并准确地提取数据内在信息的问题,提出注意力卷积门控循环单元自编码器(CGRUA-AE)深度神经网络和基于CGRUA-AE的过程故障检测方法. 采用卷积门控循环单元(ConvGRU)有效地提取输入数据的空间和时间特征;建立基于ConvGRU的自编码器,采用无监督学习对时间序列数据进行特征提取,引入注意力机制对相应的特征进行加权计算,实现对关键特征的有效选择;分别在特征空间与残差空间上建立基于T 2、SPE统计量的过程监控模型,实现对多元数据有效的特征提取和故障检测. 数值案例和田纳西?伊士曼过程故障检测结果表明,CGRUA-AE具有良好的特征提取能力和故障检测能力,性能优于常用的过程故障检测方法.


关键词: 过程监控,  故障检测,  深度学习,  自编码器,  卷积门控循环单元(ConvGRU),  注意力 
Fig.1 Structure of ConvGRU
Fig.2 Network structure of CGRUA-AE
Fig.3 Function process of AM
Fig.4 Process monitoring process based on CGRUA-AE
Fig.5 Feature visualization of fault 1
方法 故障1 故障2 平均值
PCA 0.03/0.41 0.03/0.79 0.03/0.60
KPCA 0/0.35 0/0.07 0/0.21
GRU-AE 0.01/0.83 0.01/0.83 0.01/0.83
CGRUA-AE 0.02/0.98 0.02/0.84 0.02/0.91
Tab.1 FDR/DR of four fault detection methods-based $ {T}^{2} $ statistics
方法 故障1 故障2 平均值
PCA 0.02/0.47 0.01/0.81 0.015/0.64
KPCA 0.03/0.92 0.01/0.85 0.02/0.885
GRU-AE 0.02/0.96 0.02/0.82 0.02/0.89
CGRUA-AE 0.02/0.99 0.02/0.87 0.02/0.93
Tab.2 FDR/DR of four fault detection methods-based SPE statistics
Fig.6 Monitoring results of four fault detection methods on TEP fault 5
方法 故障类型 平均值
阶跃 随机变量 未知 其他
PCA 0.01/0.78 0.01/0.72 0.02/0.51 0.01/0.77 0.014/0.69
KPCA 0.01/0.87 0.01/0.77 0.02/0.53 0.01/0.79 0.011/0.739
GRU-AE 0.02/0.87 0.07/0.85 0.08/0.67 0.04/0.82 0.051/0.803
CGRUA-AE 0.02/1 0.03/0.89 0.02/0.77 0.02/0.82 0.023/0.879
Tab.3 FDR/DR of four fault detection methods-based $ {T}^{2} $ on TEP
方法 故障类型 平均值
阶跃 随机变量 未知 其他
PCA 0.01/0.79 0.06/0.79 0.08/0.57 0.04/0.78 0.046/0.727
KPCA 0.01/0.66 0.01/0.65 0.05/0.45 0.01/0.70 0.023/0.604
GRU-AE 0.02/0.89 0.02/0.86 0.05/0.70 0.03/0.81 0.029/0.817
CGRUA-AE 0.02/0.99 0.03/0.88 0.02/0.86 0.01/0.81 0.02/0.903
Tab.4 FDR/DR of four fault detection methods-based SPE on TEP
方法 故障类型 平均值
阶跃 随机变量 未知 其他
CNN 0.02/0.86 0.03/0.79 0.02/0.68 0.03/0.80 0.025/0.785
LSTM 0.02/0.94 0.03/0.79 0.02/0.67 0.02/0.80 0.019/0.809
SDAE (T2) 0.02/0.66 0.04/0.60 0.03/0.45 0.04/0.74 0.028/0.602
SDAE(SPE) 0.03/0.88 0.05/0.87 0.09/0.73 0.07/0.85 0.061/0.832
DBN (T2) 0.01/0.87 0.01/0.79 0.02/0.55 0.02/0.81 0.014/0.75
DBN(SPE) 0.01/0.98 0.01/0.82 0.01/0.78 0.01/0.79 0.011/0.856
CGRUA-AE (T2) 0.02/1 0.03/0.89 0.02/0.77 0.02/0.82 0.023/0.879
CGRUA-AE(SPE) 0.02/0.99 0.03/0.88 0.02/0.86 0.01/0.81 0.02/0.903
Tab.5 FDR/DR of CGURA-AE and deep learning detection methods on TEP
Fig.7 Loss of CGRUA-AE and CGRU-AE
统计量 R/%
CGRU-AE CGRUA-AE
$ {T}^{2} $ 84.3 87.9
SPE 86.6 90.3
Tab.6 Fault detection rates of CGRUA-AE and CGRU-AE
[1]   YIN S, YANG X, KARIMI H R Data-driven adaptive observer for fault diagnosis[J]. Mathematical Problems in Engineering, 2012, 2012: 832836
[2]   XIE X, SUN W, CHEUNG K An advanced PLS approach for key performance indicator-related prediction and diagnosis in case of outliers[J]. IEEE Transactions on Industrial Electronics, 2016, 63 (4): 2587- 2594
[3]   YANG Q, GE S S, SUN Y Adaptive actuator fault tolerant control for uncertain nonlinear systems with multiple actuators[J]. Automatica, 2015, 60: 92- 99
doi: 10.1016/j.automatica.2015.07.006
[4]   WAN Z, LI J, GAO Y Monitoring and diagnosis process of abnormal consumption on smart power grid[J]. Neural Computing and Applications, 2018, 30 (1): 21- 28
doi: 10.1007/s00521-016-2719-4
[5]   GE Z Q Review on data-driven modeling and monitoring for plant wide industrial processes[J]. Chemometrics and Intelligent Laboratory Systems, 2017, 171: 16- 25
doi: 10.1016/j.chemolab.2017.09.021
[6]   NOR N M, HASSAN C R C, HUSSAIN M A A review of data-driven fault detection and diagnosis methods: applications in chemical process systems[J]. Reviews in Chemical Engineering, 2019, 36 (4): 513- 553
[7]   JIANG Q, YAN X, HUANG B Performance-driven distributed PCA process monitoring based on fault-relevant variable selection and bayesian inference[J]. IEEE Transactions on Industrial Electronics, 2015, 63 (1): 377- 386
[8]   DENG X, TIAN X, CHEN S, et al Nonlinear process fault diagnosis based on serial principal component analysis[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29 (3): 560- 572
doi: 10.1109/TNNLS.2016.2635111
[9]   ZHONG B, WANG J, ZHOU J, et al Quality-related statistical process monitoring method based on global and local partial least-squares projection[J]. Industrial and Engineering Chemistry Research, 2016, 55 (6): 1609- 1622
doi: 10.1021/acs.iecr.5b02559
[10]   YU G Fault feature extraction using independent component analysis with reference and its application on fault diagnosis of rotating machinery[J]. Neural Computing and Applications, 2015, 26 (1): 187- 198
doi: 10.1007/s00521-014-1726-6
[11]   ZHONG S, WEN Q, GE Z Semi-supervised Fisher discriminant analysis model for fault classification in industrial processes[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 138: 203- 211
doi: 10.1016/j.chemolab.2014.08.008
[12]   LEE J M, YOO C K, CHOI S W, et al Nonlinear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2004, 59 (1): 223- 234
doi: 10.1016/j.ces.2003.09.012
[13]   JIANG Q, YAN X Parallel PCA–KPCA for nonlinear process monitoring[J]. Control Engineering Practice, 2018, 80 (9): 17- 25
[14]   DEWI Y N, RIANA D, MANTORO T. Improving nave bayes performance in single image pap smear using weighted principal component analysis (WPCA) [C]// 2017 International Conference on Computing, Engineering, and Design (ICCED). Jakarta: IEEE, 2018: 1-5
[15]   WANG K, JUNG H C, ZHI S Performance analysis of dynamic PCA for closed-loop process monitoring and its improvement by output oversampling scheme[J]. IEEE Transactions on Control Systems and Technology, 2019, 27 (1): 378- 85
doi: 10.1109/TCST.2017.2765621
[16]   HEO S, LEE J H Fault detection and classification using artificial neural networks[J]. IFAC-PapersOnLine, 2018, 51 (18): 470- 475
doi: 10.1016/j.ifacol.2018.09.380
[17]   YANG C, HOU J Fed-batch fermentation penicillin process fault diagnosis and detection based on support vector machine[J]. Neurocomputing, 2016, 190 (19): 117- 123
[18]   LI Y, LIU Y, ZHANG C Discriminant diffusion maps based K-nearest-neighbour for batch process fault detection [J]. Canadian Journal of Chemical Engineering, 2018, 96 (2): 484- 496
doi: 10.1002/cjce.23003
[19]   KIM Y, KIM S B Optimal false alarm-controlled support vector data description for multivariate process monitoring[J]. Journal of Process Control, 2017, 65: 1- 14
[20]   黄健, 杨旭 基于在线加权慢特征分析的故障检测算法[J]. 上海交通大学学报, 2020, 54 (11): 1142- 1150
HUANG Jian, YANG Xu Online Weighted Based Slow Feature Analysis Fault Detection Algorithm[J]. Journal of Shanghai Jiao Tong University, 2020, 54 (11): 1142- 1150
[21]   HINTON, G Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313 (5786): 504- 507
doi: 10.1126/science.1127647
[22]   LECUN Y, BENGIO Y, HINTON G Deep learning[J]. Nature, 2015, 521 (7553): 436- 444
doi: 10.1038/nature14539
[23]   LIU Y, FAN Y, CHEN J Flame images for oxygen content prediction of combustion systems using DBN[J]. Energy Fuel, 2017, 31 (8): 8776- 8783
doi: 10.1021/acs.energyfuels.7b00576
[24]   XUAN Q, FANG BW, LIU Y, et al Automatic pearl classification machine based on a multistream convolutional neural network[J]. IEEE Transactions on Industrial Electronics, 2018, 65 (8): 6538- 6547
doi: 10.1109/TIE.2017.2784394
[25]   KRIZHEVSKY A, SUTSKEVER I, HINTON G ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60 (6): 84- 90
doi: 10.1145/3065386
[26]   ZHANG X Y, YIN F, ZHANG Y M, et al Drawing and recognizing chinese characters with recurrent neural network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40 (4): 849- 862
doi: 10.1109/TPAMI.2017.2695539
[27]   LAULY S, LAROCHELLE H, KHAPRA M, et al An autoencoder approach to learning bilingual word representations[J]. Advances in Neural Information Processing Systems, 2014, 3: 1853- 1861
[28]   ZHANG Z P, ZHAO J S A deep belief network based fault diagnosis model for complex chemical processes[J]. Computers and Chemical Engineering, 2017, 107: 395- 407
doi: 10.1016/j.compchemeng.2017.02.041
[29]   TANG P, PENG K, ZHANG K A deep belief network-based fault detection method for nonlinear processes[J]. IFAC-PapersOnLine, 2018, 51 (24): 9- 14
doi: 10.1016/j.ifacol.2018.09.522
[30]   李元, 冯成成 基于一维卷积神经网络深度学习的工业过程故障检测[J]. 测控技术, 2019, 38 (9): 36- 40
LI Yuan, FENG Cheng-cheng Fault detection of industrial process based on deep learning of one-dimensional convolution neural network[J]. Measurement and Control Technology, 2019, 38 (9): 36- 40
[31]   WU H, ZHAO J S Deep convolutional neural network model based chemical process fault diagnosis[J]. Computers and Chemical Engineering, 2018, 115: 185- 197
doi: 10.1016/j.compchemeng.2018.04.009
[32]   ZHANG Z H, TENG J, LI S H, et al Automated feature learning for nonlinear process monitoring: an approach using stacked denoising autoencoder and k-nearest neighbor rule[J]. Journal of Process Control, 2018, 64: 49- 61
doi: 10.1016/j.jprocont.2018.02.004
[33]   CHO K, MERRIENBOER B V, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation [C]// Proceeding of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha: [s.n.], 2014: 1724-1734.
[34]   HOCHREITER S, SCHMIDHUBER J Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780
doi: 10.1162/neco.1997.9.8.1735
[35]   SHI X, GAO Z, LAUSEN L. Deep learning for precipitation nowcasting: a benchmark and a new model [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: [s.n.], 2017: 5617-5627.
[36]   MNIH V, HEESS N, GRAVES A. Recurrent models of visual attention [EB/OL]. [2020-07-24]. http://arxiv. org/pdf/1406.6247.pdf.
[37]   CHEN Q, WYNNE R J, GOULDING P, et al The application of principal component analysis and kernel density estimation to enhance process monitoring[J]. Control Engineering Practice, 2000, 8 (5): 531- 543
doi: 10.1016/S0967-0661(99)00191-4
[38]   LAURENS V D M, HINTON G Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9 (86): 2579- 2605
[1] Xiao-chen JU,Xin-xin ZHAO,Sheng-sheng QIAN. Self-attention mechanism based bridge bolt detection algorithm[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 901-908.
[2] Li HE,Shan-min PANG. Face reconstruction from voice based on age-supervised learning and face prior information[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 1006-1016.
[3] Cheng CHEN,Hao ZHANG,Yong-qiang LI,Yuan-jing FENG. Knowledge graph link prediction based on relational generative graph attention network[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 1025-1034.
[4] You-wei WANG,Shuang TONG,Li-zhou FENG,Jian-ming ZHU,Yang LI,Fu CHEN. New inductive microblog rumor detection method based on graph convolutional network[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 956-966.
[5] Xue-qin ZHANG,Tian-ren LI. Breast cancer pathological image classification based on Cycle-GAN and improved DPN network[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 727-735.
[6] Meng XU,Dan WANG,Zhi-yuan LI,Yuan-fang CHEN. IncepA-EEGNet: P300 signal detection method based on fusion of Inception network and attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 745-753, 782.
[7] Chang-yuan LIU,Xian-ping HE,Xiao-jun BI. Efficient network vehicle recognition combined with attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 775-782.
[8] Qiao-hong CHEN,Hao-lei PEI,Qi SUN. Image caption based on relational reasoning and context gate mechanism[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 542-549.
[9] Jing-hui CHU,Li-dong SHI,Pei-guang JING,Wei LV. Context-aware knowledge distillation network for object detection[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 503-509.
[10] Ruo-ran CHENG,Xiao-li ZHAO,Hao-jun ZHOU,Han-chen YE. Review of Chinese font style transfer research based on deep learning[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 510-519, 530.
[11] Yuan-jun NONG,Jun-jie WANG,Hong CHEN,Wen-han SUN,Hui GENG,Shu-yue LI. A image caption method of construction scene based on attention mechanism and encoding-decoding architecture[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 236-244.
[12] Ying-li LIU,Rui-gang WU,Chang-hui YAO,Tao SHEN. Construction method of extraction dataset of Al-Si alloy entity relationship[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 245-253.
[13] Hong-zhao DONG,Hao-jie FANG,Nan ZHANG. Multi-scale object detection algorithm for recycled objects based on rotating block positioning[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 16-25.
[14] Xin WANG,Qiao-hong CHEN,Qi SUN,Yu-bo JIA. Visual question answering method based on relational reasoning and gating mechanism[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 36-46.
[15] Tong CHEN,Jian-feng GUO,Xin-zhong HAN,Xue-li XIE,Jian-xiang XI. Visible and infrared image matching method based on generative adversarial model[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 63-74.