Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (5): 901-908    DOI: 10.3785/j.issn.1008-973X.2022.05.007
    
Self-attention mechanism based bridge bolt detection algorithm
Xiao-chen JU1(),Xin-xin ZHAO1,*(),Sheng-sheng QIAN2
1. Railway Engineering Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing 100081, China
2. Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
Download: HTML     PDF(955KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A bolt detection model algorithm based on self attention mechanism and center point regression (SACPR) was proposed based on the real bridge bolt scene data set. Firstly, a high-quality bridge bolt scene data set based on the real scene was constructed, and for the problems of data imbalance and insufficient diversity, data enhancement method was used to expand the data, so as to obtain higher classification accuracy. Secondly, SACPR model algorithm based on deep learning framework was used to detect bolts in different scenes, and label them. Finally, the validity of the proposed method was verified by the verification experiment of bolt detection accuracy. Comparison was conducted with the results of YOLOv3, Faster-RCNN and RetinaNet, and results showed that the recognition accuracy of the three detection methods was 80.56%, 87.71% and 93.89% respectively, while the recognition accuracy of SACPR model method was 93.91%. The accuracy of SACPR model method was obviously better than that of YOLOv3 model algorithm and Faster-RCNN model algorithm. Although the recognition accuracy was almost the same as that of RetinaNet model algorithm, the detection speed of SACPR model method was 5.6 times of that of RetinaNet model.



Key wordsbridge      image recognition      SACPR      bolt detection      self-attention mechanism     
Received: 29 March 2021      Published: 31 May 2022
CLC:  TU 997  
Fund:  高铁联合基金资助项目(U1934209);中国铁路总公司系统性重大课题资助项目(P2018G002);中国铁道科学研究院集团有限公司科研项目重大课题(2020YJ087);安徽省引江济淮集团公司科研项目(YJJH-ZT-ZX-29210923429)
Corresponding Authors: Xin-xin ZHAO     E-mail: juxc2008@163.com;xyzxx000@163.com
Cite this article:

Xiao-chen JU,Xin-xin ZHAO,Sheng-sheng QIAN. Self-attention mechanism based bridge bolt detection algorithm. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 901-908.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.05.007     OR     https://www.zjujournals.com/eng/Y2022/V56/I5/901


基于自注意力机制的桥梁螺栓检测算法

基于构建的真实桥梁螺栓场景数据集,提出基于自注意力机制与中心点回归(SACPR)的螺栓检测算法. 构建基于真实场景的高质量桥梁螺栓场景数据集,并针对数据不均衡、多样性不够的问题,使用数据增强方法进行数据扩充,从而获得更高的分类精度. 采用基于深度学习框架的SACPR算法检测不同场景下的螺栓,并进行标示. 对螺栓检测准确率进行验证实验,验证SACP算法的有效性. 将试验结果与YOLOv3、Faster-RCNN、RetinaNet这3种算法结果进行对比,发现3种检测方法的识别精度分别为80.56 %、87.71%、93.89%,而所提出的SACPR 算法的识别精度为93.91%,明显优于YOLOv3算法和Faster-RCNN算法;虽然SACPR算法与RetinaNet算法的识别精度较接近,但前者的检测速度是后者的5.6倍.


关键词: 桥梁,  图像识别,  SACPR,  螺栓检测,  自注意力机制 
Fig.1 Example of image sample of bolt detection data set
Fig.2 Schematic diagram of SACPR algorithm framework
Fig.3 Data preprocessing of bolt detection dataset
IR/像素 AS EF NOFC NOROS CSS
$ 608\times 608\times 3 $ 卷积 ? 32 1 2
$ 304\times 304\times 32 $ bottleneck 1 16 1 1
$ 304\times 304\times 16 $ bottleneck 6 24 2 2
$ 152\times 152\times 24 $ bottleneck 6 32 3 1
Tab.1 Backbone network architecture parameters in SACPR algorithm
Fig.4 Schematic diagram of bolt position prediction
算法 mAP/ % v/(帧·s?1)
YOLOv3[19]
(Backbone: darknet19)
80.56 25.00
YOLOv3[19]
(Backbone: MobileNetV2)
78.81 36.00
Faster-RCNN[18] 87.71 5.80
RetinaNet[17] 93.89 7.94
SACPR 93.91 45.00
Tab.2 Comparative experiments results of different algorithms
Fig.5 Comparison of visualization results of different detection models for bolt images
Fig.6 Comparison of visualization results of different detection models of hard sampes for bolt images
[1]   张清华, 卜一之, 李乔 正交异性钢桥面板疲劳问题的研究进展[J]. 中国公路学报, 2017, 30 (3): 14- 30
ZHANG Qing-hua, BU Yi-zhi, LI Qiao Review on fatigue problems of orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2017, 30 (3): 14- 30
doi: 10.3969/j.issn.1001-7372.2017.03.002
[2]   鞠晓臣 U肋-面板全熔透焊接接头疲劳性能试验研究[J]. 中国公路学报, 2019, 32 (11): 176- 182
JU Xiao-chen Experimental study on fatigue performance of full penetration welded joints of Ushaped rib-plate[J]. China Journal of Highway and Transport, 2019, 32 (11): 176- 182
[3]   赵欣欣, 刘晓光, 潘永杰 正交异性钢桥面板纵肋腹板与面板连接构造的疲劳试验研究[J]. 中国铁道科学, 2013, 32 (2): 41- 45
ZHAO Xin-xin, LIU Xiao-guang, PAN Yong-jie Fatigue test study on the joint structure between the deck and longitudinal rib web of orthotropic steel bridge deck[J]. China Railway Science, 2013, 32 (2): 41- 45
[4]   钟新谷, 彭雄, 沈明燕 基于无人飞机成像的桥梁裂缝宽度识别可行性研究[J]. 土木工程学报, 2019, 52 (4): 52- 61
ZHONG Xin-gu, PENG Xiong, SHEN Ming-yan Feasibility study on bridge crack width identification based on UAV imaging[J]. China Civil Engineering Journal, 2019, 52 (4): 52- 61
[5]   CHOU J C, O’NEILLWENDE A, CHENGH D Pavement distress evaluation using fuzzy logic and moment in variants[J]. Transportation Research Record, 1995, 1505 (1): 39- 46
[6]   NGUYEN N H, KAM T Y, CHENG P Y An automatic approach for accurate edge detection of concrete crack utilizing 2D geometric features of crack[J]. Journal of Signal Processing System, 2014, 77 (3): 221- 240
doi: 10.1007/s11265-013-0813-8
[7]   CHA Y J, CHOI W, BÜYÜKÖZTÜRK O Deep learning-based crack damage detection using convolutional neural networks[J]. Compute-aided Civil and Infrastructure Engineering, 2017, 32 (5): 361- 378
doi: 10.1111/mice.12263
[8]   沙爱民, 童峥, 高杰 基于卷积神经网络的路表病害识别与测量[J]. 中国公路学报, 2018, 31 (1): 1- 10
SHA Ai-min, TONG Zheng, GAO Jie Road surface disease recognition and measurement based on convolutional neural network[J]. China Journal of Highway and Transport, 2018, 31 (1): 1- 10
doi: 10.3969/j.issn.1001-7372.2018.01.001
[9]   韩晓健, 赵志成, 沈泽江 卷积神经网络在桥梁结构表面病害检测中的应用研究[J]. 结构工程师, 2019, 35 (2): 106- 111
HAN Xiao-jian, ZHAO Zhi-cheng, SHEN Ze-jiang Research on the application of convolutional neural network in the detection of bridge structure surface diseases[J]. Structural Engineers, 2019, 35 (2): 106- 111
doi: 10.3969/j.issn.1005-0159.2019.02.014
[10]   赵欣欣, 钱胜胜, 刘晓光 基于卷积神经网络的铁路桥梁高强螺栓缺失图像识别方法[J]. 中国铁道科学, 2018, 39 (4): 56- 62
ZHAO Xin-xin, QIAN Sheng-sheng, LIU Xiao-guang Recognition method for missing images of railway bridge high-strength bolts based on convolutional neural network[J]. China Railway Science, 2018, 39 (4): 56- 62
doi: 10.3969/j.issn.1001-4632.2018.04.09
[11]   李良福, 马卫飞, 李丽 基于深度学习的桥梁裂缝检测算法研究[J]. 自动化学报, 2019, 6: 1- 16
LI Liang-fu, MA Wei-fei, LI Li Research on bridge crack detection algorithm based on deep learning[J]. Acta Automatica Sinica, 2019, 6: 1- 16
[12]   CHA Y J, CHOI W, SUH G Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types[J]. Computer-aided Civil and Infrastructure Engineering, 2018, 33 (4): 1- 17
[13]   ZHANG C, CHANG C, JAMSHIDI M Concrete bridge surface damage detection using a single-stage detector[J]. Computer-aided Civil and Infrastructure Engineering, 2020, 35 (4): 389- 409
[14]   LUVIZON D C, PICARD D, TABIA H HediTabia: multi-task deep learning for real-time 3D human pose estimation and action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43 (8): 2752- 2764
[15]   ZHOU X, WANG D, KRÄHENBÜHL P. Objects as points [EB/OL]. [2019-04-16]. https://arxiv.org/abs/1904.07850.
[16]   SANDLER M, HOWARD A, ZHU M. Mobilenetv2: invert residuals and linear bottlenecks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018, 4510-4520.
[17]   LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [C]// Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2980-2988.
[18]   REN S, HE K, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39 (6): 1137- 1149
[1] Jin-feng WANG,Song-wei YANG,Yang-yang KANG,Hua-wei XIANG. General calculation method for manufacturing parameters of steel box girder in staged construction[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 550-557.
[2] Xue-ying BAO,Ya-juan LI,Suo-ting HU,Xin-lin BAN,Lin WANG,Jian-chao XU. Tradeoff optimization of key elements of technical interface of railway bridge-tunnel engineering[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 558-568.
[3] Ying-li LIU,Rui-gang WU,Chang-hui YAO,Tao SHEN. Construction method of extraction dataset of Al-Si alloy entity relationship[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 245-253.
[4] Sheng-tao XIANG,Da WANG. Model interactive modification method based on improved quantum genetic algorithm[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 100-110.
[5] Rong-chuang WANG,Shan-shan WANG,Ming GAO,Jian-jiang SHI. Three-port DC-DC converter based on LCL resonant dual active bridge and its decoupling control[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1585-1593.
[6] Wei JI,Tian-yan SHAO. Optimization analysis of double launching noses during launching construction of multi-span continuous girder bridge[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1289-1298.
[7] Ying-jie ZHENG,Song-rong WU,Ruo-yu WEI,Zhen-wei TU,Jin LIAO,Dong LIU. Metro location point matching and false alarm elimination based on FCM algorithm of target image[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 586-593.
[8] Xu XIE,Wen-tong HUANG,Long-fei JI,Tian-jia WANG. Influence of fault rupture process on seismic responses of seismic isolation bridges[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2225-2233.
[9] Jian-ming TANG,Xu XIE. Investigation on vibration serviceability of long-span suspension footbridge under crosswind[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1903-1911.
[10] Zhong-nan LI,Hai-bo ZHU,Yang ZHAO,Xue LUO,Rong-qiao XU. Thermal stress analysis and crack control of assembled bridge pier[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 46-54.
[11] Xiao-yan SUN,Gui TANG,Hai-long WANG,Qun WANG,Zhi-cheng ZHANG. Effect of 3D printing path on mechanical properties of arch concrete bridge[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2085-2091.
[12] Xiao-wei LIAO,Yuan-qing WANG,Jian-guo WU,Yong-jiu SHI. Fatigue performance of non-load-carrying cruciform fillet-welded joints at low ambient temperature[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2018-2026.
[13] Li-guo WANG,Xu-dong SHAO,Jun-hui CAO,Yu-bao CHEN,Guang HE,Yang WANG. Performance of steel-ultrathin UHPC composite bridge deck based on ultra-short headed studs[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2027-2037.
[14] Yi-jia ZHAO,Yun-jian WANG,Yao-dong WANG,Wei ZHANG. Power prediction control of ISOP based on single phase shift control[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 160-168.
[15] Xian-rong DAI,Lu WANG,Chang-jiang WANG,Xiao-yang WANG,Rui-li SHEN. Anti-slip scheme of full-vertical friction plate for multi-pylon suspension bridge[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1697-1703.