|
|
Axial compression bearing capacity of steel reinforced concrete rectangular columns confined by carbon fiber reinforced polymer |
Peng GAO1,2( ),Xue-bo ZENG1,Yi-long WU3,Fei PENG3 |
1. School of Civil Engineering, Hefei University of Technology, Hefei 230009, China 2. Key Laboratory of Performance Evolution and Control for Engineering Structures of Ministry of Education, Tongji University, Shanghai 200092, China 3. State Grid Anhui Electric Power Limited Company, Hefei 230009, China |
|
|
Abstract Twenty-nine specimens were conducted to the axial compression experiment, in order to study the axial compression performance of steel reinforced concrete rectangular columns confined by carbon fiber reinforced polymer (CFRP). Six parameters were considered, which included reinforcement ratio, preload level, corner radius and aspect ratio of cross sections, as well as amount and scheme of CFRP. Results indicated that the confined columns all failed in the fracture of CFRP when the core concrete crushed. With the increasing preload level, both the effective tensile strain of CFRP and the bearing capacity of confined columns decreased gradually. With the increasing corner radius and decreasing aspect ratio, the circumferential strain of CFRP got higher value and more uniform distribution. As increasing amount of CFRP, the constraint mode of the column changed from weak constraint to strong constraint, and the utilization of CFRP decreased. When the width and spacing of the strips decreased, the increment of bearing capacity increased with the same amount of CFRP. Finally, considering various parameters, the boundary value for determining the strong and weak modes was proposed. The formulation of the axial bearing capacity of confined steel reinforced rectangular columns was set up by superposition method.
|
Received: 07 June 2021
Published: 31 May 2022
|
|
Fund: 国家自然科学基金资助项目 (51208166); 工程结构性能演化与控制教育部重点实验室开放基金资助项目 (2018KF-1) |
碳纤维布约束型钢混凝土矩形柱轴压承载力
为了研究碳纤维布(CFRP)约束型钢混凝土矩形柱的轴压性能,对29个构件进行静力加载试验,考虑配筋率、预载水平、截面圆角半径和高宽比、纤维布加固率和加固方式共6个参数. 结果表明:所有约束柱均以核心区混凝土压碎和纤维布断裂为破坏标志;随着预载水平提高,布的有效拉应变不断减小,柱承载力降低;随着圆角半径增大和高宽比减小,纤维布环向应变更高且分布趋于均匀;随着加固率增加,柱破坏模式由弱约束转成强约束,纤维布加固效率降低;在同等用量布的加固下,当条带宽度和间距减小时,构件承载力增幅增加. 基于各因素对约束应力的影响,确定了区分大尺寸柱强弱约束模式的界限值;采用叠加法建立了多参数的约束型钢柱轴压承载力计算式.
关键词:
纤维增强复合材料,
约束型钢混凝土柱,
轴压试验,
承载力,
强弱约束
|
|
[1] |
刘伟庆, 方海, 方园 纤维增强复合材料及其结构研究进展[J]. 建筑结构学报, 2019, 40 (4): 1- 16 LIU Wei-qing, FANG Hai, FANG Yuan Research progress of fiber-reinforced composite and structure[J]. Journal of Building Structures, 2019, 40 (4): 1- 16
|
|
|
[2] |
吴智深, 汪昕, 史健喆 玄武岩纤维复合材料性能提升及其新型结构[J]. 工程力学, 2020, 37 (5): 1- 14 WU Zhi-shen, WANG Xin, SHI Jian-zhe Advancement of basalt fiber-reinforced polymers (BFRPS) and the novel structures reinforced with BFRPS[J]. Engineering Mechanics, 2020, 37 (5): 1- 14
|
|
|
[3] |
史庆轩, 戎翀, 陈云枭 FRP-钢-混凝土组合柱的研究现状[J]. 建筑材料学报, 2019, 22 (3): 431- 439 SHI Qing-xuan, RONG Chong, CHEN Yun-xiao Research status of FRP-steel-concrete composite column[J]. Journal of Building Materials, 2019, 22 (3): 431- 439
doi: 10.3969/j.issn.1007-9629.2019.03.015
|
|
|
[4] |
潘毅, 曹双寅, 敬登虎 负载下碳纤维布约束混凝土方柱轴压应力-应变关系的试验研究与分析[J]. 土木工程学报, 2009, 42 (1): 23- 29 PAN Yi, CAO Shuang-yin, JING Deng-hu Test and analysis of the axial stress-strain relationship of square section concrete columns confined by CFRP under preload[J]. Journal of Civil Engineering, 2009, 42 (1): 23- 29
doi: 10.3321/j.issn:1000-131X.2009.01.004
|
|
|
[5] |
潘毅, 吴晓飞, 郭瑞, 等 长期荷载作用下FRP约束混凝土应力-应变关系分析模型[J]. 建筑结构学报, 2017, 38 (10): 139- 148 PAN Yi, WU Xiao-fei, GUO Rui, et al Analysis-oriented stress-strain model of FRP-confined concrete under long-term sustained load[J]. Journal of Building Structures, 2017, 38 (10): 139- 148
|
|
|
[6] |
WANG L M, WU Y F Effect of corner radius on the performance of CFRP-confined square concrete columns: test[J]. Engineering Structures, 2008, 30: 493- 505
doi: 10.1016/j.engstruct.2007.04.016
|
|
|
[7] |
MOSTOFINEJAD D, MOSHIRI N, MORTAZAVI N Effect of corner radius and aspect ratio on compressive behavior of rectangular concrete columns confined with CFRP[J]. Materials and Structures, 2015, 48 (1/2): 107- 122
|
|
|
[8] |
WU Y F, WEI Y Y Effect of cross-sectional aspect ratio on the strength of CFRP confined rectangular concrete columns[J]. Engineering Structures, 2010, 32 (1): 32- 45
doi: 10.1016/j.engstruct.2009.08.012
|
|
|
[9] |
PARK T W, NA U J, CHUNG L, et al Compressive behavior of concrete cylinders confined by narrow strips of CFRP with spacing[J]. Composites Part B: Engineering, 2008, 39 (7/8): 1093- 1103
|
|
|
[10] |
周长东, 黄承逵 玻璃纤维聚合物约束混凝土方柱简化分析模型[J]. 哈尔滨工业大学学报, 2004, 36 (5): 637- 641,651 ZHOU Chang-dong, HUANG Cheng-kui Simplified analytic models for GFRP confined concrete square columns[J]. Journal of Harbin Institute of Technology, 2004, 36 (5): 637- 641,651
doi: 10.3321/j.issn:0367-6234.2004.05.021
|
|
|
[11] |
敬登虎, 曹双寅 方形截面混凝土柱FRP约束下的轴向应力-应变曲线计算模型[J]. 土木工程学报, 2005, 38 (12): 32- 37 JING Deng-hu, CAO Shuang-yin A model for calculating the axial stress-strain curve of square-section concrete column confined by FRP[J]. China Civil Engineering Journal, 2005, 38 (12): 32- 37
doi: 10.3321/j.issn:1000-131X.2005.12.006
|
|
|
[12] |
中国冶金建设协会. 纤维增强复合材料建设工程应用技术规范: GB 50608—2010 [S]. 北京: 中国计划出版社, 2011.
|
|
|
[13] |
王作虎, 申书洋, 崔宇强, 等 CFRP加固混凝土柱轴压性能尺寸效应试验分析[J]. 哈尔滨工业大学学报, 2020, 52 (8): 112- 120 WANG Zuo-hu, SHEN Shu-yang, CUI Yu-qiang, et al Experimental analysis on size effect of axial compressive behavior for reinforced concrete columns with CFRP[J]. Journal of Harbin Institute of Technology, 2020, 52 (8): 112- 120
doi: 10.11918/201906169
|
|
|
[14] |
GUO Y C, GAO W Y, ZENG J J Compressive behavior of FRP ring-confined concrete in circular columns: effects of specimen size and a new design-oriented stress-strain model[J]. Construction and Building Materials, 2019, 201: 350- 368
doi: 10.1016/j.conbuildmat.2018.12.183
|
|
|
[15] |
WANG D Y, WANG Z Y, SMITH S T, et al Size effect on axial stress-strain behavior of CFRP-confined square concrete columns[J]. Construction and Building Materials, 2016, 118: 116- 126
doi: 10.1016/j.conbuildmat.2016.04.158
|
|
|
[16] |
MASIA M J, GALE T N, SHRIVE N G Size effects in axially loaded square-section concrete prisms strengthened using carbon fibre reinforced polymer wrapping[J]. Canadian Journal of Civil Engineering, 2004, 31 (1): 1- 13
doi: 10.1139/l03-064
|
|
|
[17] |
中国国家标准化管理委员会. 金属材料室温拉伸试验方法: GB/T 228—2002 [S]. 北京: 中国标准出版社, 2002.
|
|
|
[18] |
熊学玉, 徐海峰, 李亚明 负载下CFRP布约束钢筋混凝土矩形柱轴心受压性能分析[J]. 土木工程学报, 2010, 43 (6): 26- 33 XIONG Xue-yu, XU Hai-feng, LI Ya-ming The axial compressive behavior of CFRP-confined rectangular RC columns under service loading[J]. China Civil Engineering Journal, 2010, 43 (6): 26- 33
|
|
|
[19] |
NISTICO N, MONTI G RC square sections confined by FRP: analytical prediction of peak strength[J]. Composites Part B: Engineering, 2013, 45 (1): 127- 137
|
|
|
[20] |
KARAM G, TABBARA M Confinement effectiveness in rectangular concrete columns with fiber reinforced polymer wraps[J]. Journal of Composites for Construction, 2005, 9 (5): 388- 396
doi: 10.1061/(ASCE)1090-0268(2005)9:5(388)
|
|
|
[21] |
SAATCIOGLU M, RAZVI S R Strength and ductility of confined concrete[J]. Journal of Structural Engineering, 1992, 118 (6): 1590- 1607
doi: 10.1061/(ASCE)0733-9445(1992)118:6(1590)
|
|
|
[22] |
MANDER J B, PRIESTLEY M J N, PARK R Theoretical stress-strain model for confined concrete[J]. Materials in Civil Engineering, 1988, 114 (8): 1804- 1826
|
|
|
[23] |
MIRMIRAN A, SHAHAWY M, SAMAAN M, et al Effect of column parameters on FRP-confined concrete[J]. Journal of Composites for Construction, 1998, 2 (4): 175- 185
doi: 10.1061/(ASCE)1090-0268(1998)2:4(175)
|
|
|
[24] |
王代玉, 王震宇, 乔鑫 CFRP中等约束钢筋混凝土方柱反复受压本构模型[J]. 湖南大学学报:自然科学版, 2014, 41 (4): 39- 46 WANG Dai-yu, WANG Zhen-yu, QIAO Xin Cyclic stress strain model for CFRP moderately confined reinforced concrete square columns[J]. Journal of Hunan University: Natural Science Edition, 2014, 41 (4): 39- 46
|
|
|
[25] |
TOUTANJI H, HAN M, GILBERT J, et al Behavior of large-scale rectangular columns confined with FRP composites[J]. Journal of Composites for Construction, 2010, 14 (1): 62- 71
doi: 10.1061/(ASCE)CC.1943-5614.0000051
|
|
|
[26] |
ZENG J J, LIN G, TENG J G, et al Behavior of large-scale FRP-confined rectangular RC columns under axial compression[J]. Engineering Structures, 2018, 174: 629- 645
doi: 10.1016/j.engstruct.2018.07.086
|
|
|
[27] |
高鹏, 殷强, 王健, 等 复材布约束有预压荷载的型钢混凝土矩形短柱轴压性能试验研究[J]. 工业建筑, 2016, 46 (6): 170- 176 GAO Peng, YIN Qiang, WANG Jian, et al Experimental study of the axial compressive performance of preloaded steel reinforced concrete rectangular short column confined by carbon fiber reinforced polymer laminates[J]. Industrial Building, 2016, 46 (6): 170- 176
|
|
|
[28] |
高鹏, 赵元鸿, 洪丽, 等 圆角半径对碳纤维增强聚合物复合材料布约束型钢混凝土矩形短柱轴压性能的影响[J]. 复合材料学报, 2020, 37 (4): 775- 785 GAO Peng, ZHAO Yuan-hong, HONG Li, et al Effect of corner radius on axial compressive performance of steel reinforced concrete rectangular short column confined by carbon fiber reinforced polymer composite[J]. Acta Materiae Composite Sinica, 2020, 37 (4): 775- 785
|
|
|
[29] |
DELUCA A, NARDONE F, MATTA F, et al Structural evaluation of full-scale FRP-confined reinforced concrete columns[J]. Journal of Composites for Construction, 2011, 15 (1): 112- 123
doi: 10.1061/(ASCE)CC.1943-5614.0000152
|
|
|
[30] |
ACI 440 Committee. Guide for design and construction of externally bonded FRP systems for strengthening concrete structures: ACI 440.2R-08 [S]. Farmington Hills: American Concrete Institute, 2008.
|
|
|
[31] |
CHEN C C, LIN N J Analytical model for predicting axial capacity and behavior of concrete encased steel composite stub columns[J]. Journal of Constructional Steel Research, 2006, 62 (5): 424- 433
doi: 10.1016/j.jcsr.2005.04.021
|
|
|
[32] |
RAZVI S, SAATCIOGLU M Confinement model for high-strength concrete[J]. Journal of Structural Engineering, 1999, 125 (3): 281- 289
doi: 10.1061/(ASCE)0733-9445(1999)125:3(281)
|
|
|
[33] |
王连广, 秦国鹏, 周乐 GFRP管钢骨高强混凝土组合柱轴心受压试验研究[J]. 工程力学, 2009, 26 (9): 170- 175 WANG Lian-guang, QIN Guo-peng, ZHOU Le Experimental research of GFRP tube columns filled with steel-reinforced high-strength concrete subjected to axial loading[J]. Engineering Mechanics, 2009, 26 (9): 170- 175
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|