Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (5): 890-900, 908    DOI: 10.3785/j.issn.1008-973X.2022.05.006
    
Axial compression bearing capacity of steel reinforced concrete rectangular columns confined by carbon fiber reinforced polymer
Peng GAO1,2(),Xue-bo ZENG1,Yi-long WU3,Fei PENG3
1. School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
2. Key Laboratory of Performance Evolution and Control for Engineering Structures of Ministry of Education, Tongji University, Shanghai 200092, China
3. State Grid Anhui Electric Power Limited Company, Hefei 230009, China
Download: HTML     PDF(3086KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Twenty-nine specimens were conducted to the axial compression experiment, in order to study the axial compression performance of steel reinforced concrete rectangular columns confined by carbon fiber reinforced polymer (CFRP). Six parameters were considered, which included reinforcement ratio, preload level, corner radius and aspect ratio of cross sections, as well as amount and scheme of CFRP. Results indicated that the confined columns all failed in the fracture of CFRP when the core concrete crushed. With the increasing preload level, both the effective tensile strain of CFRP and the bearing capacity of confined columns decreased gradually. With the increasing corner radius and decreasing aspect ratio, the circumferential strain of CFRP got higher value and more uniform distribution. As increasing amount of CFRP, the constraint mode of the column changed from weak constraint to strong constraint, and the utilization of CFRP decreased. When the width and spacing of the strips decreased, the increment of bearing capacity increased with the same amount of CFRP. Finally, considering various parameters, the boundary value for determining the strong and weak modes was proposed. The formulation of the axial bearing capacity of confined steel reinforced rectangular columns was set up by superposition method.



Key wordsfiber reinforced polymer      confined steel reinforced concrete column      axial compression experiment      bearing capacity      strong and weak confinement     
Received: 07 June 2021      Published: 31 May 2022
CLC:  TU 502  
Fund:  国家自然科学基金资助项目 (51208166); 工程结构性能演化与控制教育部重点实验室开放基金资助项目 (2018KF-1)
Cite this article:

Peng GAO,Xue-bo ZENG,Yi-long WU,Fei PENG. Axial compression bearing capacity of steel reinforced concrete rectangular columns confined by carbon fiber reinforced polymer. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 890-900, 908.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.05.006     OR     https://www.zjujournals.com/eng/Y2022/V56/I5/890


碳纤维布约束型钢混凝土矩形柱轴压承载力

为了研究碳纤维布(CFRP)约束型钢混凝土矩形柱的轴压性能,对29个构件进行静力加载试验,考虑配筋率、预载水平、截面圆角半径和高宽比、纤维布加固率和加固方式共6个参数. 结果表明:所有约束柱均以核心区混凝土压碎和纤维布断裂为破坏标志;随着预载水平提高,布的有效拉应变不断减小,柱承载力降低;随着圆角半径增大和高宽比减小,纤维布环向应变更高且分布趋于均匀;随着加固率增加,柱破坏模式由弱约束转成强约束,纤维布加固效率降低;在同等用量布的加固下,当条带宽度和间距减小时,构件承载力增幅增加. 基于各因素对约束应力的影响,确定了区分大尺寸柱强弱约束模式的界限值;采用叠加法建立了多参数的约束型钢柱轴压承载力计算式.


关键词: 纤维增强复合材料,  约束型钢混凝土柱,  轴压试验,  承载力,  强弱约束 
编号 h×b/mm×mm d/mm n w/mm s′/mm r/mm m Pc
1)注:以构件YZ2-0.50为例:“YZ”指预载组;“2”指包裹2层纤维布;“0.50”指对应的设计预载水平为0.50.
DB1 300×250 16 0 ? ? ? ? 1
DB2 300×250 16 0 ? ? ? ? 2

YZ2-0.501) 300×250 16 2 100 100 20 0.50 1
YZ2-0.60 300×250 16 2 100 100 20 0.60 1
YZ2-0.65 300×250 16 2 100 100 20 0.65 1
YZ2-0.70 300×250 16 2 100 100 20 0.70 1
YJ2-20 300×250 16 2 100 100 20 ? 1
YJ2-40 300×250 16 2 100 100 40 ? 1
YJ2-60 300×250 16 2 100 100 60 ? 1
YJ2-80 300×250 16 2 100 100 80 ? 1
JL2-100 300×250 16 2 100 100 20 ? 1
JL3-100 300×250 16 3 100 100 20 ? 1
JL3-75 300×250 16 3 100 75 20 ? 1
JL3-50 300×250 16 3 100 50 20 ? 1
JL4-50 300×250 16 4 100 50 20 ? 1
JF1-0 300×250 16 1 800 0 20 ? 2
JF2-50 300×250 16 2 50 50 20 ? 2
JF2-80 300×250 16 2 80 80 20 ? 2
JF2-100 300×250 16 2 100 100 20 ? 2
JF2-200 300×250 16 2 200 200 20 ? 2
GK2-1.0 250×250 16 2 100 100 20 ? 2
GK2-1.2 300×250 16 2 100 100 20 ? 2
GK2-1.4 350×250 16 2 100 100 20 ? 2
GK2-1.6 400×250 16 2 100 100 20 ? 2
PJ1-14 300×250 14 1 100 100 20 ? 2
PJ1-16 300×250 16 1 100 100 20 ? 2
PJ1-18 300×250 18 1 100 100 20 ? 2
PJ1-20 300×250 20 1 100 100 20 ? 2
PJ1-22 300×250 22 1 100 100 20 ? 2
Tab.1 Parameters of CFRP-confined reinforced steel concrete columns in axial compression experiment
Fig.1 Specimen design for axial compression experiment of CFRP-confined reinforced steel concrete columns
Fig.2 Axial compressive test setup of CFRP-confined reinforced steel concrete column
Fig.3 Comparison of failure modes of DB1 and typical columns in YZ Group
Fig.4 Failure modes of columns and CFRP in YJ and GK group
Fig.5 Failure modes of columns in JL and JF group
Fig.6 Axial load-deformation curves of CFRP-confined reinforced steel concrete test columns in each group
Fig.7 Load-CFRP strain curves of YJ2-40 and YJ2-80
Fig.8 CFRP strain distribution of GK2-1.0 and GK2-1.6
Fig.9 Relationship between efficiency factor of CFRP strain and preload level
Fig.10 Illustration of free-body of equivalent stress and striped confinement
Fig.11 Boundary value of lateral confinement ratio for strong and weak modes
Fig.12 Regionalization of confined concrete in cross sections of strengthened composite column
编号 A/mm2 Aco/mm2 Acc/mm2 Ach/mm2 λ fcc/MPa Nc/kN Ne/kN Nc/Ne
YZ2-0.50 74656 36418 33031 2968 0.033 22.67 1973 1813 1.088
YZ2-0.60 74656 36418 33031 2968 0.030 22.61 1972 1740 1.133
YZ2-0.65 74656 36418 33031 2968 0.029 22.58 1971 1704 1.157
YZ2-0.70 74656 36418 33031 2968 0.028 22.55 1970 1601 1.230
YJ2-20 74656 36418 33031 2968 0.046 22.95 1982 1856 1.068
YJ2-40 73624 25004 43413 2968 0.052 23.10 1977 1997 0.990
YJ2-60 71904 15760 50937 2968 0.053 23.12 1954 2047 0.954
YJ2-80 69496 8684 55605 2968 0.054 23.14 1915 2027 0.945
JL2-100 74656 36418 33031 2968 0.046 22.95 1982 1856 1.068
JL3-100 74656 36418 33031 2968 0.068 23.45 1998 1928 1.036
JL3-75 74656 36418 33031 2968 0.077 23.64 2003 2026 0.989
JL3-50 74656 36418 33031 2968 0.086 23.83 2009 2192 0.917
JL4-50 74656 36418 33031 2968 0.114 24.45 2028 2255 0.900
JF1-0 74656 36418 33031 2968 0.038 21.02 1870 1848 1.012
JF2-50 74656 36418 33031 2968 0.062 21.51 1885 2082 0.906
JF2-80 74656 36418 33031 2968 0.054 21.36 1881 2070 0.909
JF2-100 74656 36418 33031 2968 0.049 21.26 1878 2014 0.932
JF2-200 74656 36418 33031 2968 0.029 20.84 1865 1772 1.052
GK2-1.0 62156 29400 27549 2968 0.051 21.30 1659 1786 0.929
GK2-1.2 74656 36418 33031 2968 0.049 21.26 1878 2014 0.932
GK2-1.4 87156 43461 38488 2968 0.049 21.25 2097 2246 0.934
GK2-1.6 99656 50520 43929 2968 0.048 21.24 2317 2346 0.987
PJ1-14 74656 36418 33220 2968 0.025 20.76 1791 1838 0.974
PJ1-16 74656 36418 33031 2968 0.025 20.76 1862 1856 1.003
PJ1-18 74656 36418 32818 2968 0.025 20.76 1943 1906 1.019
PJ1-20 74656 36418 32579 2968 0.025 20.76 2033 1923 1.057
PJ1-22 74656 36418 32315 2968 0.025 20.76 2133 1988 1.073
Tab.2 Comparison between experimental results and calculation value of compressive bearing capacities for CFRP-confined reinforced steel concrete columns
[1]   刘伟庆, 方海, 方园 纤维增强复合材料及其结构研究进展[J]. 建筑结构学报, 2019, 40 (4): 1- 16
LIU Wei-qing, FANG Hai, FANG Yuan Research progress of fiber-reinforced composite and structure[J]. Journal of Building Structures, 2019, 40 (4): 1- 16
[2]   吴智深, 汪昕, 史健喆 玄武岩纤维复合材料性能提升及其新型结构[J]. 工程力学, 2020, 37 (5): 1- 14
WU Zhi-shen, WANG Xin, SHI Jian-zhe Advancement of basalt fiber-reinforced polymers (BFRPS) and the novel structures reinforced with BFRPS[J]. Engineering Mechanics, 2020, 37 (5): 1- 14
[3]   史庆轩, 戎翀, 陈云枭 FRP-钢-混凝土组合柱的研究现状[J]. 建筑材料学报, 2019, 22 (3): 431- 439
SHI Qing-xuan, RONG Chong, CHEN Yun-xiao Research status of FRP-steel-concrete composite column[J]. Journal of Building Materials, 2019, 22 (3): 431- 439
doi: 10.3969/j.issn.1007-9629.2019.03.015
[4]   潘毅, 曹双寅, 敬登虎 负载下碳纤维布约束混凝土方柱轴压应力-应变关系的试验研究与分析[J]. 土木工程学报, 2009, 42 (1): 23- 29
PAN Yi, CAO Shuang-yin, JING Deng-hu Test and analysis of the axial stress-strain relationship of square section concrete columns confined by CFRP under preload[J]. Journal of Civil Engineering, 2009, 42 (1): 23- 29
doi: 10.3321/j.issn:1000-131X.2009.01.004
[5]   潘毅, 吴晓飞, 郭瑞, 等 长期荷载作用下FRP约束混凝土应力-应变关系分析模型[J]. 建筑结构学报, 2017, 38 (10): 139- 148
PAN Yi, WU Xiao-fei, GUO Rui, et al Analysis-oriented stress-strain model of FRP-confined concrete under long-term sustained load[J]. Journal of Building Structures, 2017, 38 (10): 139- 148
[6]   WANG L M, WU Y F Effect of corner radius on the performance of CFRP-confined square concrete columns: test[J]. Engineering Structures, 2008, 30: 493- 505
doi: 10.1016/j.engstruct.2007.04.016
[7]   MOSTOFINEJAD D, MOSHIRI N, MORTAZAVI N Effect of corner radius and aspect ratio on compressive behavior of rectangular concrete columns confined with CFRP[J]. Materials and Structures, 2015, 48 (1/2): 107- 122
[8]   WU Y F, WEI Y Y Effect of cross-sectional aspect ratio on the strength of CFRP confined rectangular concrete columns[J]. Engineering Structures, 2010, 32 (1): 32- 45
doi: 10.1016/j.engstruct.2009.08.012
[9]   PARK T W, NA U J, CHUNG L, et al Compressive behavior of concrete cylinders confined by narrow strips of CFRP with spacing[J]. Composites Part B: Engineering, 2008, 39 (7/8): 1093- 1103
[10]   周长东, 黄承逵 玻璃纤维聚合物约束混凝土方柱简化分析模型[J]. 哈尔滨工业大学学报, 2004, 36 (5): 637- 641,651
ZHOU Chang-dong, HUANG Cheng-kui Simplified analytic models for GFRP confined concrete square columns[J]. Journal of Harbin Institute of Technology, 2004, 36 (5): 637- 641,651
doi: 10.3321/j.issn:0367-6234.2004.05.021
[11]   敬登虎, 曹双寅 方形截面混凝土柱FRP约束下的轴向应力-应变曲线计算模型[J]. 土木工程学报, 2005, 38 (12): 32- 37
JING Deng-hu, CAO Shuang-yin A model for calculating the axial stress-strain curve of square-section concrete column confined by FRP[J]. China Civil Engineering Journal, 2005, 38 (12): 32- 37
doi: 10.3321/j.issn:1000-131X.2005.12.006
[12]   中国冶金建设协会. 纤维增强复合材料建设工程应用技术规范: GB 50608—2010 [S]. 北京: 中国计划出版社, 2011.
[13]   王作虎, 申书洋, 崔宇强, 等 CFRP加固混凝土柱轴压性能尺寸效应试验分析[J]. 哈尔滨工业大学学报, 2020, 52 (8): 112- 120
WANG Zuo-hu, SHEN Shu-yang, CUI Yu-qiang, et al Experimental analysis on size effect of axial compressive behavior for reinforced concrete columns with CFRP[J]. Journal of Harbin Institute of Technology, 2020, 52 (8): 112- 120
doi: 10.11918/201906169
[14]   GUO Y C, GAO W Y, ZENG J J Compressive behavior of FRP ring-confined concrete in circular columns: effects of specimen size and a new design-oriented stress-strain model[J]. Construction and Building Materials, 2019, 201: 350- 368
doi: 10.1016/j.conbuildmat.2018.12.183
[15]   WANG D Y, WANG Z Y, SMITH S T, et al Size effect on axial stress-strain behavior of CFRP-confined square concrete columns[J]. Construction and Building Materials, 2016, 118: 116- 126
doi: 10.1016/j.conbuildmat.2016.04.158
[16]   MASIA M J, GALE T N, SHRIVE N G Size effects in axially loaded square-section concrete prisms strengthened using carbon fibre reinforced polymer wrapping[J]. Canadian Journal of Civil Engineering, 2004, 31 (1): 1- 13
doi: 10.1139/l03-064
[17]   中国国家标准化管理委员会. 金属材料室温拉伸试验方法: GB/T 228—2002 [S]. 北京: 中国标准出版社, 2002.
[18]   熊学玉, 徐海峰, 李亚明 负载下CFRP布约束钢筋混凝土矩形柱轴心受压性能分析[J]. 土木工程学报, 2010, 43 (6): 26- 33
XIONG Xue-yu, XU Hai-feng, LI Ya-ming The axial compressive behavior of CFRP-confined rectangular RC columns under service loading[J]. China Civil Engineering Journal, 2010, 43 (6): 26- 33
[19]   NISTICO N, MONTI G RC square sections confined by FRP: analytical prediction of peak strength[J]. Composites Part B: Engineering, 2013, 45 (1): 127- 137
[20]   KARAM G, TABBARA M Confinement effectiveness in rectangular concrete columns with fiber reinforced polymer wraps[J]. Journal of Composites for Construction, 2005, 9 (5): 388- 396
doi: 10.1061/(ASCE)1090-0268(2005)9:5(388)
[21]   SAATCIOGLU M, RAZVI S R Strength and ductility of confined concrete[J]. Journal of Structural Engineering, 1992, 118 (6): 1590- 1607
doi: 10.1061/(ASCE)0733-9445(1992)118:6(1590)
[22]   MANDER J B, PRIESTLEY M J N, PARK R Theoretical stress-strain model for confined concrete[J]. Materials in Civil Engineering, 1988, 114 (8): 1804- 1826
[23]   MIRMIRAN A, SHAHAWY M, SAMAAN M, et al Effect of column parameters on FRP-confined concrete[J]. Journal of Composites for Construction, 1998, 2 (4): 175- 185
doi: 10.1061/(ASCE)1090-0268(1998)2:4(175)
[24]   王代玉, 王震宇, 乔鑫 CFRP中等约束钢筋混凝土方柱反复受压本构模型[J]. 湖南大学学报:自然科学版, 2014, 41 (4): 39- 46
WANG Dai-yu, WANG Zhen-yu, QIAO Xin Cyclic stress strain model for CFRP moderately confined reinforced concrete square columns[J]. Journal of Hunan University: Natural Science Edition, 2014, 41 (4): 39- 46
[25]   TOUTANJI H, HAN M, GILBERT J, et al Behavior of large-scale rectangular columns confined with FRP composites[J]. Journal of Composites for Construction, 2010, 14 (1): 62- 71
doi: 10.1061/(ASCE)CC.1943-5614.0000051
[26]   ZENG J J, LIN G, TENG J G, et al Behavior of large-scale FRP-confined rectangular RC columns under axial compression[J]. Engineering Structures, 2018, 174: 629- 645
doi: 10.1016/j.engstruct.2018.07.086
[27]   高鹏, 殷强, 王健, 等 复材布约束有预压荷载的型钢混凝土矩形短柱轴压性能试验研究[J]. 工业建筑, 2016, 46 (6): 170- 176
GAO Peng, YIN Qiang, WANG Jian, et al Experimental study of the axial compressive performance of preloaded steel reinforced concrete rectangular short column confined by carbon fiber reinforced polymer laminates[J]. Industrial Building, 2016, 46 (6): 170- 176
[28]   高鹏, 赵元鸿, 洪丽, 等 圆角半径对碳纤维增强聚合物复合材料布约束型钢混凝土矩形短柱轴压性能的影响[J]. 复合材料学报, 2020, 37 (4): 775- 785
GAO Peng, ZHAO Yuan-hong, HONG Li, et al Effect of corner radius on axial compressive performance of steel reinforced concrete rectangular short column confined by carbon fiber reinforced polymer composite[J]. Acta Materiae Composite Sinica, 2020, 37 (4): 775- 785
[29]   DELUCA A, NARDONE F, MATTA F, et al Structural evaluation of full-scale FRP-confined reinforced concrete columns[J]. Journal of Composites for Construction, 2011, 15 (1): 112- 123
doi: 10.1061/(ASCE)CC.1943-5614.0000152
[30]   ACI 440 Committee. Guide for design and construction of externally bonded FRP systems for strengthening concrete structures: ACI 440.2R-08 [S]. Farmington Hills: American Concrete Institute, 2008.
[31]   CHEN C C, LIN N J Analytical model for predicting axial capacity and behavior of concrete encased steel composite stub columns[J]. Journal of Constructional Steel Research, 2006, 62 (5): 424- 433
doi: 10.1016/j.jcsr.2005.04.021
[32]   RAZVI S, SAATCIOGLU M Confinement model for high-strength concrete[J]. Journal of Structural Engineering, 1999, 125 (3): 281- 289
doi: 10.1061/(ASCE)0733-9445(1999)125:3(281)
[33]   王连广, 秦国鹏, 周乐 GFRP管钢骨高强混凝土组合柱轴心受压试验研究[J]. 工程力学, 2009, 26 (9): 170- 175
WANG Lian-guang, QIN Guo-peng, ZHOU Le Experimental research of GFRP tube columns filled with steel-reinforced high-strength concrete subjected to axial loading[J]. Engineering Mechanics, 2009, 26 (9): 170- 175
[1] Wei WANG,Hao-tian ZHAO,Chao-chao QUAN,Hong-lai SONG,Yu LI,Yi-xiang ZHOU. Shear bearing capacity of vertical corrugated steel plate shear wall with replaceable toe[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1407-1418.
[2] Bing FENG,Yong CHEN,Xu CUI,Guo-hui SHEN,Hai-wei XU. Critical loads of axially compressed GFRP round tubes considering shear deformations[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1894-1902.
[3] Wen-tao HU,Dou LIU,Da-xin GENG,Ning WANG,Chang-jie XU,Xing SHANGGUAN,Jie MIN. Internal force and deformation of step-tapered pile under lateral loads[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 739-747.
[4] Xiao-yan SUN,Gui TANG,Hai-long WANG,Qun WANG,Zhi-cheng ZHANG. Effect of 3D printing path on mechanical properties of arch concrete bridge[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2085-2091.
[5] Jin-feng WANG,Ai-ping ZHANG,Wen-hao WANG. Effects of stud height on shear behavior of stud connectors[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2076-2084.
[6] Xue-ying BAO,Yu-xi ZHENG,Qi-cai WANG. Construction group comprehensive bearing capacity analysis of deep cutting under green construction[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 482-491.
[7] WANG Zhong-jin, ZHANG Ri-hong, WANG Kui-hua, FANG Peng-fei, XIE Xin-yu, XU Han-qiang, LI Jin-zhu. Bearing characteristic of static drill rooted pile considering condition of energy carrier[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 11-18.
[8] JIANG Xiang, TONG Gen-shu, ZHANG Lei. Fire resistance and bending bearing capacity of fire-resistant steel-concrete composite beams[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1482-1493.
[9] HE Ben, WANG Huan, HONG Yi, WANG Li zhong, ZHAO Chang jun, QIN Xiao. Effect of vertical load on lateral behavior of single pile in clay[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(7): 1221-1229.
[10] LIU Yi-xiang, TONG Gen-shu, ZHANG Lei. Fire resistance and load-bearing capacity of concrete filled fire-resistant steel tubular columns with circular cross-section[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(2): 208-217.
[11] XIONG Hai bei, LI Ben ben, JIANG Jia fei. Applicability of stress strain model for FRP confined concrete cylinders[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(12): 2363-2375.
[12] ZHOU Jia jin, WANG Kui hua, GONG Xiao nan, ZHANG Ri hong,YAN Tian long. Numerical simulation on behavior of static drill rooted pile under tension[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2135-2141.
[13] ZHOU Jia-jin, GONG Xiao-nan, WANG Kui-hua, ZHANG Ri-hong. Performance of static drill rooted nodular piles under compression[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(5): 835-842.
[14] CHEN Yue-chao, ZHOU Xiao-jun, YANG Chen-long, LI-Zhao.
Microstructure and feature of pores for corner of L-shape CFRP components
[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(10): 1775-1880.
[15] SHEN Guo-hui, CHEN Zhen, XING Yue-long, GUO Yong, SUN Bing-nan. Bearing capacity of steel tubular joints under compression in
direction of annular ribbed plate
[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(1): 168-173.