The bucket model of the bearing mechanism of the construction group was established considering the short-board effect of the pollutant discharge factors in the construction process, for the purpose of seeking the optimal combination system of "green construction-resource- environment-construction activity intensity". This model was based on the multi-dimensional benefits under ideal bearing state, taking the construction group as the research subject. According to the principle of state space method, the bucket bottom, bucket wall and bucket water were taken as the status axis, the bearing status was taken as main body and the state of the bearing capacity of the construction group was modeled. Combining the construction of deep cutting and expert decision-making opinions, thirty-one variables were selected as bearing and pressure indexes. With the Canopy platform, the random forest (RF) algorithm and the short board factor measurement model were used to assign weights, and the comprehensive carrying status of the construction group was determined. Taking the deep cutting of Lanxin high-speed railway as an example, a bucket model considering the short-board effect was constructed, the state of the construction group was determined based on the state space model. And it is believed that the green construction effect is positively correlated with the bearing state of the construction group; the comparison of the radar chart in the previous research confirms the feasibility of the proposed model and method.
Xue-ying BAO,Yu-xi ZHENG,Qi-cai WANG. Construction group comprehensive bearing capacity analysis of deep cutting under green construction. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 482-491.
Fig.1Bucket model of construction group bearing mechanism
Fig.2State space model of construction group bearing capacity
Fig.3Working principle of random forest (RF) algorithm
Fig.4Short board effect trend under different parameters
属性
一级指标
二级指标
三级指标
注:标中未标注单位的三级指标拟用专家打分法
压力 指标
施工活动
工程 特性
边坡高度(m)
C1
挖方量(m3)
C2
路堑长度(km)
C3
施工平面布置图
C4
施工机械配置状况
C5
资源 消耗
施工用水(L/s)
C6
施工用电(KWh/d)
C7
施工用地(%)
C8
燃油消耗(t/d)
C9
其他材料消耗
C10
劳动力(人/d)
C11
水土流失率(%)
C12
环境 污染
扬尘(m)
C13
振动(mm/s)
C14
噪声(dB)
C15
土壤污染
C16
水环境污染
C17
固废排放
C18
光污染(Lux)
C19
有害气体
C20
承压 指标
环境
环境 治理
污染物处置情况
E1
拦渣率
E2
资源
自然 资源
地形地貌
R1
地层岩性
R2
地质构造
R3
水文地质条件
R4
可利用土地资源
R5
可利用水资源
R6
其他可利用资源
R7
社会 资源
绿色施工管理
R8
绿色技术应用
R9
Tab.1Evaluation index system for bearing mechnism of deep cutting construction group
指标
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
注:在表1中标有单位的均为现场监测值,其余为分值
标段1
25
172 194
1.378
90
90
7.46
2 321
85
195.63
85
55
标段2
28
183 289
1.309
85
90
6.98
2 532
85
208.23
83
65
标段3
25
138 438
1.198
88
85
8.53
2 019
78
157.28
90
50
标段4
23
132 653
1.154
85
85
8.67
1 943
70
150.71
75
48
标段5
27
223 834
1.658
75
85
9.73
2 887
74
254.3
80
70
理想值
25.6
170 081.6
1.339 4
84.6
87
8.274
2 340.4
78.4
193.23
82.6
57.6
指标
C12
C13
C14
C15
C16
C17
C18
C19
C20
E1
E2
标段1
10
1.8
4.5
67.5
90
85
75
88
95
80
90
标段2
15
2.3
4.7
65
90
70
75
93
93
80
87
标段3
15
1.5
4.7
60
88
70
70
98
93
75
85
标段4
13
1.9
4.3
65
87
75
70
100
95
75
87
标段5
10
2.5
4.6
62.5
88
60
65
97
90
75
90
理想值
12.6
1.5
5
70
60
60
60
101
60
77
87.8
指标
R1
R2
R3
R4
R5
R6
R7
R8
R9
?
?
标段1
70
65
75
70
80
65
75
80
75
?
?
标段2
75
65
70
65
80
70
75
70
65
?
?
标段3
75
70
70
70
75
70
80
70
65
?
?
标段4
70
75
70
75
75
70
80
65
70
?
?
标段5
65
65
70
70
75
75
80
60
60
?
?
理想值
71
68
71
70
77
70
78
69
67
?
?
Tab.2Basic data statistics of five construction sections of Lanxin high speed rail
指标
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
标段1
0.920
0.770
0.837
1.000
1.000
0.936
0.837
0.824
0.770
0.944
0.873
标段2
0.821
0.724
0.882
0.944
1.000
1.000
0.767
0.824
0.724
0.922
0.738
标段3
0.920
0.958
0.963
0.978
0.944
0.818
0.962
0.897
0.958
1.000
0.960
标段4
1.000
1.000
1.000
0.944
0.944
0.805
1.000
1.000
1.000
0.833
1.000
标段5
0.852
0.593
0.696
0.833
0.944
0.717
0.673
0.946
0.593
0.889
0.686
理想值
0.898
0.780
0.862
0.940
0.967
0.844
0.830
0.893
0.780
0.918
0.833
指标
C12
C13
C14
C15
C16
C17
C18
C19
C20
E1
E2
标段1
1.000
0.833
0.956
0.889
1.000
1.000
1.000
1.000
1.000
1.000
1.000
标段2
0.667
0.652
0.915
0.923
1.000
0.824
1.000
0.946
0.979
1.000
0.967
标段3
0.667
1.000
0.915
1.000
0.978
0.824
0.933
0.898
0.979
0.938
0.944
标段4
0.769
0.789
1.000
0.923
0.967
0.882
0.933
0.880
1.000
0.938
0.967
标段5
1.000
0.600
0.935
0.960
0.978
0.706
0.867
0.907
0.947
0.938
1.000
理想值
0.794
1.000
0.860
0.857
0.667
0.706
0.800
0.871
0.632
0.963
0.976
指标
R1
R2
R3
R4
R5
R6
R7
R8
R9
?
?
标段1
0.933
0.867
1.000
0.933
1.000
0.867
0.938
1.000
1.000
?
?
标段2
1.000
0.867
0.933
0.867
1.000
0.933
0.938
0.875
0.867
?
?
标段3
1.000
0.933
0.933
0.933
0.938
0.933
1.000
0.875
0.867
?
?
标段4
0.933
1.000
0.933
1.000
0.938
0.933
1.000
0.813
0.933
?
?
标段5
0.867
0.867
0.933
0.933
0.938
1.000
1.000
0.750
0.800
?
?
理想值
0.947
0.907
0.947
0.933
0.963
0.933
0.975
0.863
0.893
?
?
Tab.3Standardization of data for five construction sections of Lanxin high peed rail
Fig.5Out of bag(OOB) error between training samples and test samples
%
折号
1
2
3
4
5
精度
训练
14.22
13.54
16.58
12.43
14.89
14.332
测试
13.78
12.32
13.92
8.77
10.39
11.836
Tab.4Five-fold cross-validation out of bag (OOB) error rate
Fig.6Random forest weight values of various variables
标段编号
Fac
Fic
cos θ
Fic, ac
CBC
标段1
0.935 2
1.023 0
0.991 6
1.014 4
1.084 7
标段2
0.880 8
0.998 8
0.989 7
0.988 6
1.122 4
标段3
0.917 9
0.916 7
0.993 8
0.911 0
0.992 4
标段4
0.931 1
0.863 9
0.931 3
0.804 6
0.864 1
标段5
0.841 8
0.712 4
0.986 6
0.702 9
0.835 0
Tab.5Comprehensive bearing capacity of each tender section construction group
Fig.7Radar plot of comprehensive evaluation of green construction in existing researches
[1]
廖慧璇, 籍永丽, 彭少麟 资源环境承载力与区域可持续发展[J]. 生态环境学报, 2016, 25 (7): 1253- 1258 LIAO Hui-xuan, JI Yong-li, PENG Shao-lin Resources and environment carrying capacity and regional sustainable development[J]. Journal of Eco-environment, 2016, 25 (7): 1253- 1258
[2]
封志明, 杨艳昭, 闫慧敏, 等 百年来的资源环境承载力研究: 从理论到实践[J]. 资源科学, 2017, 39 (3): 379- 395 FENG Zhi-ming, YANG Yan-zhao, YAN Hui-min, et al Research on bearing capacity of resources and environment in the past 100 years: from theory to practice[J]. Resources Science, 2017, 39 (3): 379- 395
[3]
KALUWIN C Takes different approach in pacific islands[J]. Intercostal Network, 1996, 27: 4- 10
[4]
屈小娥 陕西省水资源承载力综合评价研究[J]. 干旱区资源与环境, 2017, 31 (2): 91- 97 QU Xiao-e Comprehensive evaluation of water resources carrying capacity in shaanxi province[J]. Journal of Arid Land Resources and Environment, 2017, 31 (2): 91- 97
[5]
KEI GOMI, YUKI OCHI, YUZURU MATSUOKA A systematic quantitative backcasting on low?carbon society policy in case of Kyoto city[J]. Technological Forecasting and Social Change, 2011, (78): 852- 871
[6]
郑亚光, 蒋瑛, 王琨岚 四川省城市承载力评价[J]. 国土资源科技管理, 2017, 34 (4): 18- 26 ZHENG Ya-guang, JIANG Yu, WANG Wei Evaluation of urban bearing capacity in Sichuan province[J]. Land and Resources Science and Technology Management, 2017, 34 (4): 18- 26
[7]
LANE M The carrying capacity imperative: assessing regional carrying capacity methodologies for sustainable land-use planning[J]. Land Use Policy, 2010, 27 (4): 1038- 1045
doi: 10.1016/j.landusepol.2010.01.006
[8]
孔繁玉 绿色施工理念下铁路工程施工安全风险预警[J]. 山西建筑, 2016, 42 (11): 248- 250 KONG Fan-yu Early warning of railway engineering construction safety risk under the concept of green construction[J]. Shanxi Architecture, 2016, 42 (11): 248- 250
doi: 10.3969/j.issn.1009-6825.2016.11.137
[9]
屈云帅, 李家春, 齐洪亮, 等 深路堑的生态影响及防治措施[J]. 交通企业管理, 2012, 27 (7): 53- 55 QU Yun-shuai, LI Jia-chun, QI Hong-liang, et al Ecological impact and prevention measures of deep roller[J]. Transport Enterprise Management, 2012, 27 (7): 53- 55
doi: 10.3963/j.issn.1006-8864.2012.4.027
[10]
郑南翔, 丛卓红 黄土地区深路堑、高路堤合理横断面的评价方法[J]. 长安大学学报: 自然科学版, 2003, 23 (5): 14- 17 ZHENG Nan-xiang, CONG Zhuo-hong A method for appraising rational cross sections of deep cut and high embankment in loess area[J]. Journal of Chang’an University: Natural Science Edition, 2003, 23 (5): 14- 17
[11]
李健, 杨丹丹, 高杨 基于状态空间模型的天津市环境承载力动态测评[J]. 干旱区资源与环境, 2014, 28 (11): 25- 30 LI Jian, YANG Dan-dan, GAO Yang Dynamic assessment of environmental carrying capacity in Tianjin based on state-space model[J]. Journal of Arid Land Resources and Environment, 2014, 28 (11): 25- 30
[12]
赵铜铁钢, 杨大文, 蔡喜明, 等 基于随机森林模型的长江上游枯水期径流预报研究[J]. 水力发电学报, 2012, 31 (3): 18- 24 ZHAO Tong-tie-gang, YANG Da-wen, CAI Xi-ming, et al Runoff forecasting during the dry season in the upper reaches of the Yangtze River based on the random forest model[J]. Journal of Hydroelectric Engineering, 2012, 31 (3): 18- 24
[13]
杨光宇, 曾东方, 罗平 考虑短板效应的一种度量模型及其在软件可信性中的应用[J]. 计算机应用研究, 2012, 29 (1): 165- 167 YANG Guang-yu, ZENG Dong-fang, LUO Ping A measurement model considering the short board effect and its application in software reliability[J]. Research on Application of Computer, 2012, 29 (1): 165- 167
[14]
吕晶. 绿色施工量化评价研究[D]. 重庆: 重庆大学, 2015. LV Jing. Research on quantitative evaluation of green construction [D]. Chongqing: Chongqing University, 2015.
[15]
徐晓亮, 许学芬 资源税改革与我国区域" 资源诅咒”困境[J]. 系统工程理论与实践, 2015, 35 (9): 2232- 2241 XU Xiao-liang, XU Xue-fen Resource tax reform and the dilemma of regional resource curses in China[J]. Systems Engineering-Theory and Practice, 2015, 35 (9): 2232- 2241