Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (2): 257-263    DOI: 10.3785/j.issn.1008-973X.2020.02.006
Civil and Transportation Engineering     
Tension analysis of hangers with stepped cross-section based on state space method
Guang OUYANG1(),Tian-jun LI2,Jiang-tao ZHANG1,Jing-feng WANG1,Rong-qiao XU1,*()
1. Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
2. Faculty of Engineering, China University of Geosciences (Wuhan), Wuhan 430074, China
Download: HTML     PDF(808KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An accurate analysis method based on the state space method was developed for the dynamic characteristics of hangers with stepped cross-section for arch bridges using the theory of Euler-Bernoulli beam with axial force. The different cross-section characteristics and material parameters of each part of hangers can be considered in detail as well as the complicated boundary conditions at both ends of the hangers in practical engineering. The relationship of the free vibration frequencies and tension of hangers can then be obtained. It provides a theoretical basis for the so-called frequency method to measure the tension of hangers. The method was verified by the in-situ testing data of tension forces and the results of finite element analysis for the hangers of a practical arch bridge. When the length of the cable segment of a hanger is greater than a certain threshold, a strong linear relation between the effective calculation length of the hanger and the realistic length of the cable segment of the hanger exists. As a result, this method can be combined with the classical string theory, and the effective length of the hanger related to the realistic length of the cable segment can be identified. The classical string theory can be used to calculate the tension of hangers conveniently in practical engineering.



Key wordshanger with stepped cross-section      tension      frequency method      state space method      effective length     
Received: 12 January 2019      Published: 10 March 2020
CLC:  TU 311  
Corresponding Authors: Rong-qiao XU     E-mail: ouyangguang@zju.edu.cn;xurongqiao@zju.edu.cn
Cite this article:

Guang OUYANG,Tian-jun LI,Jiang-tao ZHANG,Jing-feng WANG,Rong-qiao XU. Tension analysis of hangers with stepped cross-section based on state space method. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 257-263.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.02.006     OR     http://www.zjujournals.com/eng/Y2020/V54/I2/257


基于状态空间法的分段变截面吊杆张拉力分析

针对分段变截面拱桥吊杆的动力特性,采用受轴向张拉力作用的Euler-Bernoulli梁理论建立分析模型,开发基于状态空间法的精确分析方法. 该方法详细考虑吊杆各部分不同的截面特性和材料参数,以及吊杆两端实际较为复杂的边界条件,给出吊杆自由振动的频率与其张拉力的关系,为基于频率法的吊杆张拉力测试方法提供理论基础. 通过某实际拱桥的吊杆张拉力测试数据以及有限元分析结果,验证所提方法. 当吊杆的索体长度大于阈值时,吊杆的有效计算长度与吊杆的实际索体长度存在着较强的线性关系,因此可将本研究方法与经典弦理论公式相结合,识别与索体长度相关的吊杆有效计算长度,可在实际工程中运用弦理论公式方便地计算吊杆张拉力.


关键词: 分段变截面吊杆,  张拉力,  频率法,  状态空间法,  有效长度 
Fig.1 Schmatic diagram of hanger of arch bridge
Fig.2 Beam model of hanger with stepped cross-section of arch bridge
参数 Ai /(10?2 m2 Ii /(10?6 m4 Li /m
上叉耳(开叉) 2.09 84.30 0.300
上叉耳(实心) 3.74 151.00 0.136
上锚头 3.55 3.89 0.260
下锚头 3.55 3.89 0.260
连接头 1.77 24.90 0.147
调节套筒 1.77 24.90 0.462
下叉耳(实心) 3.74 151.00 0.136
下叉耳(开叉) 2.09 84.30 0.300
Tab.1 Geometric parameters of hangers
吊杆编号 T/kN f0 /Hz fT /Hz fF /Hz
1)注:括号内数据为本研究结果相对实测结果的误差;2)注:括号内数据为本研究结果相对有限元结果的误差
1# 58.8 10.778 11.328(?4.86%)1) 10.708(0.65%)2)
2# 147.0 12.636 13.477(?6.24%) 12.616(0.16%)
3# 333.2 15.069 14.844(1.52%) 15.042(0.18%)
4# 254.8 16.288 15.527(4.90%) 16.287(0.01%)
5# 390.5 21.929 21.582(1.61%) 21.921(0.04%)
6# 174.4 19.490 19.531(?0.21%) 19.503(?0.07%)
Tab.2 Comparisons of fundamental frequencies calculated by proposed method with actual measurements and finite element analysis results
Fig.3 First-order mode shape of hanger 1#~6#
lc /m f1 /Hz l0 /m l0 /lc (0.984lc+0.339)/m T1 /kN [(T1?T0)/T0]/%
0.5 37.118 2.002 4.005 ? ? ?
1.0 33.294 2.232 2.232 ? ? ?
1.5 30.847 2.409 1.606 ? ? ?
2.0 28.236 2.632 1.316 ? ? ?
2.5 25.194 2.950 1.180 ? ? ?
3.0 22.174 3.352 1.117 3.291 289.211 ?3.60
3.5 19.561 3.800 1.086 3.783 297.364 ?0.88
4.0 17.407 4.270 1.067 4.275 300.717 0.24
4.5 15.643 4.751 1.056 4.767 301.982 0.66
5.0 14.187 5.239 1.048 5.259 302.297 0.77
5.5 12.970 5.730 1.042 5.751 302.169 0.72
6.0 11.942 6.224 1.037 6.243 301.834 0.61
6.5 11.061 6.719 1.034 6.735 301.409 0.47
7.0 10.301 7.216 1.031 7.227 300.952 0.32
7.5 9.637 7.713 1.028 7.719 300.494 0.16
8.0 9.053 8.210 1.026 8.211 300.051 0.02
8.5 8.535 8.708 1.025 8.703 299.629 ?0.12
9.0 8.073 9.207 1.023 9.195 299.231 ?0.26
9.5 7.658 9.705 1.022 9.687 298.859 ?0.38
10.0 7.284 10.204 1.020 10.179 298.511 ?0.50
Tab.3 Recognition results of effective calculation length of hanger
Fig.4 Relationship between effective calculation length and length of cable segment
[1]   KO J M, NI Y Q Technology developments in structural health monitoring of large-scale bridges[J]. Engineering Structures, 2005, 27 (12): 1715- 1725
doi: 10.1016/j.engstruct.2005.02.021
[2]   陈鲁, 张其林, 吴明儿 索结构中拉索张力测量的原理与方法[J]. 工业建筑, 2006, 36 (1): 368- 371
CHEN Lu, ZHANG Qi-lin, WU Ming-er Principle and method of measuring cable tension in a cable structures[J]. Industrial Construction, 2006, 36 (1): 368- 371
[3]   IRVINE H M, CAUGHEY T K The linear theory of free vibrations of a suspended cable[J]. Proceedings of the Royal Society A, 1974, 341 (1626): 299- 315
doi: 10.1098/rspa.1974.0189
[4]   KRONEBERGER-STANTON K J, HARTSOUGH B R A monitor for indirect measurement of cable vibration frequency and tension[J]. Transaction of the ASCE, 1992, 35 (1): 341- 346
doi: 10.13031/2013.28609
[5]   CASAS J R A combined method for measuring cable forces: the cable-stayed Alamillo Bridge, Spain[J]. Structural Engineering International, 1994, 4 (94): 235- 240
[6]   RUSSELL J C, LARDNERZ T J Experimental determination of frequencies and tension for elastic cables[J]. Journal of Engineering Mechanics, 1998, 124 (10): 1067- 1072
doi: 10.1061/(ASCE)0733-9399(1998)124:10(1067)
[7]   CUNHA A, CAETANO E, DELGADO R Dynamic tests on large cable-stayed bridge[J]. Journal of Bridge Engineering, 2001, 6 (1): 54- 62
doi: 10.1061/(ASCE)1084-0702(2001)6:1(54)
[8]   REN W X, CHEN G, HU W H Empirical formulas to estimate cable tension by cable fundamental frequency[J]. Structural Engineering and Mechanics, 2005, 20 (20): 363- 380
[9]   KIM B H, PARK T Estimation of cable tension force using the frequency-based system identification method[J]. Journal of Sound and Vibration, 2007, 304 (3?5): 660- 676
doi: 10.1016/j.jsv.2007.03.012
[10]   FANG Z, WANG J Q Practical formula for cable tension estimation by vibration method[J]. Journal of Bridge Engineering, 2012, 17 (1): 161- 164
doi: 10.1061/(ASCE)BE.1943-5592.0000200
[11]   CHEN C C, WU W H, LEU M R, et al Tension determination of stay cable or external tendon with complicated constraints using multiple vibration measurements[J]. Measurement, 2016, 86: 182- 195
doi: 10.1016/j.measurement.2016.02.053
[12]   姚文斌, 何天淳, 王锋 斜拉桥拉索索力测定的新方法[J]. 仪器仪表学报, 2001, 22 (增2): 90- 91
YAO Wen-bin, HE Tian-chun, WANG Feng A new method determining cable tension on cable-stayed bridge[J]. Chinese Journal of Scientific Instrument, 2001, 22 (增2): 90- 91
[13]   SUMITRO S, KUROKAWA S, SHIMANO K, et al Monitoring based maintenance utilizing actual stress sensory technology[J]. Smart Materials and Structures, 2005, 14 (3): S68
doi: 10.1088/0964-1726/14/3/009
[14]   SUMITRO S, WANG M L Sustainable structural health monitoring system[J]. Structural Control and Health Monitoring, 2010, 12 (3/4): 445- 467
[15]   NAGULESWARAN S Vibration of an Euler–Bernoulli beam on elastic end supports and with up to three step changes in cross-section[J]. International Journal of Mechanical Sciences, 2002, 44 (12): 2541- 2555
doi: 10.1016/S0020-7403(02)00190-X
[16]   NAGULESWARAN S Vibration and stability of an Euler-Bernoulli beam with up to three-step changes in cross-section and in axial force[J]. International Journal of Mechanical Sciences, 2003, 45 (9): 1563- 1579
doi: 10.1016/j.ijmecsci.2003.09.001
[17]   LEE J W, LEE J Y Free vibration analysis using the transfer-matrix method on a tapered beam[J]. Computers and Structures, 2016, 164 (C): 75- 82
[18]   BANERJEE J R Free vibration of centrifugally stiffened uniform and tapered beams using the dynamic stiffness method[J]. Journal of Sound and Vibration, 2000, 233 (5): 857- 875
doi: 10.1006/jsvi.1999.2855
[19]   NAGEM R, WILLIAMSJR J Dynamic analysis of large space structures using transfer matrices and joint coupling matrices[J]. Journal of Structural Mechanics, 2012, 17 (3): 349- 371
[20]   方志, 张智勇 斜拉桥的索力测试[J]. 中国公路学报, 1997, (1): 51- 58
FANG Zhi, ZHANG Zhi-yong Test of cable tension in cable-stayed bridges[J]. China Journal of Highway and Transport, 1997, (1): 51- 58
[21]   刘文峰, 应怀樵, 柳春图 考虑刚度及边界条件的索力精确求解[J]. 振动与冲击, 2003, 22 (4): 12- 14
LIU Wen-feng, YING Huai-qiao, LIU Chun-tu Precise solution of cable tensile force in consideration of cable stiffness and its boundary conditions[J]. Journal of Vibration and Shock, 2003, 22 (4): 12- 14
doi: 10.3969/j.issn.1000-3835.2003.04.004
[1] Wei-ming HUANG,Jin-chang WANG,Ri-qing XU,Zhong-xuan YANG,Rong-qiao XU. Structural analysis of shield tunnel lining using theory of curved beam resting on elastic foundation[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 787-795.
[2] Hao-yu WU,Yong-sheng ZHAO,Yan-ping HE,Wen-gang MAO,Jie YANG,Xiao-li GU,Chao HUANG. Transient response analysis of tension-leg-platformfloating offshore wind turbine under tendon failure conditions[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2196-2203.
[3] HU Qian-yun, CHANG Xiao-lin, FENG Chu-qiao, ZHOU Wei, MA Gang. Study of meso-damage characteristics of concrete based on properties evolution theory[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(8): 1596-1604.
[4] LIU Cheng-bin, LIU Wen-yao, CHEN Wei-qiu, WANG Hui-ming, LV Chao-feng. Generalized thermal shock analysis of piezoelectric spherical shell based on L-S theory[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(6): 1185-1193.
[5] FAN Peng-xuan, CHEN Wu-jun, ZHAO Bing, HU Jian-hui, ZHANG Da-xu, FANG Guang-qiang, PENG Fu-jun. Finite strain viscoelastic model of shape memory polymer in Prony series form[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(6): 1194-1200.
[6] WANG Ji-yang, MA Wei-qiang, HU Zhi-hua, WAN Cheng-lin. Effect of PE fiber content on mechanical behavior of cementitious composite[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(11): 2130-2135.
[7] LI Zhi-ning, HAN Tong-chun, DOU Hong-qiang, QIU Zi-yi. Analysis of torque on helical soil nail drilling into strata[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(8): 1426-1433.
[8] CAO Yu, LIU Zi-yan.
Safety assessment on big flexible pipe installation under sea
#br#  
[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(6): 1108-1115.
[9] CHEN Yu-feng, CHEN Wu-jun, QIU Zhen-yu, ZHAO Bin. Effects of air on modal behavior of pre-stressed membrane structure[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(6): 1123-1127.
[10] CAO Yu, LIU Zi-yan. Safety assessment on big flexible pipe installation under sea[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(2): 3-4.
[11] WANG Ban, YI Lin, GUO Ji feng. Performance study and development of tether control mechanism for space tethered net robot[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(10): 1974-1981.
[12] PAN Xiao-yu, XIE Xu, LI Xiao-zhang, SUN Wenzhi, ZHU Han-hua. Mechanical properties and grading method of corroded high-tensile steel wires[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(11): 1917-1924.
[13] YU Ke-quan, LU Zhou-dao, TANG An-jing. Residual crack extension resistance during complete fracture
process of post-fire concrete
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(4): 588-594.
[14] XIA Mei-meng, GUAN Fu-ling. Improved PSO based pretension optimum of
cable net in antenna
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(3): 480-487.
[15] WANG Xiang-bing,TONG Shui-guang,ZHONG Wei,ZHANG Jian. Study on  scheme design technique for hydraulic excavator's structure performance based on extension reuse[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(11): 1992-2002.