Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (11): 2085-2091    DOI: 10.3785/j.issn.1008-973X.2020.11.003
    
Effect of 3D printing path on mechanical properties of arch concrete bridge
Xiao-yan SUN1(),Gui TANG1,Hai-long WANG1,*(),Qun WANG2,Zhi-cheng ZHANG1
1. School of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Zhejiang Greentown Architectural Design Co. Ltd, Hangzhou 310007, China
Download: HTML     PDF(1562KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The CT scanning technology was adopted to analyze the microstructure of a 3D printed concrete in order to figure out the influence of printing path on the mechanical properties of the 3D printed concrete arch bridge. The effect of printing path on the pore distribution of printed arch structure was investigated, and the approximate porosities of interlayer and inter-strip were obtained on the basis of canned images. Based on the fine finite element numerical simulation analysis, the effects of lengthwise printing, combination printing and horizontal printing on the bearing capacity were obtained and compared with that of cast-in-place concrete arch. The results show that the printing path has a direct effect on the distribution and the number of defects in the interlayers and strip layers. The amount of inter-strip defects is obviously lager than that in interlayers. The bearing capacity of printed arch is linearly related with the porosity of printed concrete. The lengthwise printing concrete arches were tested, the numerical simulation had a good agreement with the experimental result. The relative error of peak load was 8.0%, the relative error of mid span displacement was 11.9%, and the failure mode and failure position were consistent with the test results. For the lengthwise printed arch, the dominant defect originates from the interlayer, resulting the smallest defect area and largest bearing capacity.



Key words3D printing      concrete      arch bridge      bearing capacity      CT scanning     
Received: 23 September 2019      Published: 15 December 2020
CLC:  TU 375  
Corresponding Authors: Hai-long WANG     E-mail: selina@zju.edu.cn;hlwang@zju.edu.cn
Cite this article:

Xiao-yan SUN,Gui TANG,Hai-long WANG,Qun WANG,Zhi-cheng ZHANG. Effect of 3D printing path on mechanical properties of arch concrete bridge. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2085-2091.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.11.003     OR     http://www.zjujournals.com/eng/Y2020/V54/I11/2085


3D打印路径对混凝土拱桥结构力学性能的影响

为了分析打印路径对3D打印混凝土拱桥力学性能的影响机制,采用CT技术对3D打印混凝土进行微观扫描分析,探讨打印路径对成型后结构孔隙空间分布的影响规律,得到层间、条间缺陷层的近似孔隙率.基于数值模拟分析,对比纵向打印、组合打印、横向打印以及浇筑对混凝土拱桥结构承载性能的影响规律. 结果表明:打印路径直接影响层间缺陷和条间缺陷的数量和分布,打印拱结构的承载能力与打印体的孔隙率线性相关. 条间缺陷对承载能力的影响明显大于层间. 纵向打印路径数值模拟与模型试验结果吻合良好,峰值荷载相对误差为8.0%,跨中位移相对误差为11.9%,破坏形态与失效位置一致. 对于拱桥结构,纵向打印的缺陷类型以层间为主,且缺陷层总面积最小,承载力性能最好.


关键词: 3D打印,  混凝土,  拱桥,  承载性能,  CT扫描 
Fig.1 Diagrams of printing path and layers'−strips' interfaces of printed concrete
Fig.2 Scanning and three-dimensional model reconstruction of printed concrete
Fig.3 Spatial distribution of pores in 3D printed
Fig.4 Model size of arch bridge
Fig.5 Models setting for concrete arch bridge
区域 V/mm3 Po /% VP /mm3
层间缺陷 30 324 5 1 516
条间缺陷 8 960 8 717
非缺陷区 200 716 2.57 5 158
整体 240 000 3.08 7 391
Tab.1 Values of layer and strip defects for numerical simulation of printed concrete
Fig.6 Simulating distribution of defeats between layers and strips
Fig.7 Constitutive relations of materials used in numerical simulation
工况 Nn Ne
浇筑模型 91 564 19 822
纵向打印 65 242 23 141
组合打印 81 814 28 627
横向打印 118 846 36 442
Tab.2 Number of nodes and units in models numerical simulation
Fig.8 Elements distribution of arch bridge formed with different printing paths
Fig.9 Experimental model of 3D printed concrete arch
Fig.10 Load-midspan deflection curve of arch bridge with experimental models and numerical simulation
Fig.11 Failure mode comparison of arch bridge with numerical simulation and experimental models
Fig.12 Load-midspan displacement curves of arch structures
Fig.13 Bearing capacity of 3D printed arch structure
Fig.14 Maximum principal stress in arch structures
[1]   肖绪文, 马荣全, 田伟 3D打印建造研发现状及发展战略[J]. 施工技术, 2017, 46 (1): 5- 8
XIAO Xu-wen, MA Rong-quan, TIAN Wei State and development strategy for 3D printing construction technology[J]. Construction Technology, 2017, 46 (1): 5- 8
[2]   崔小芳 分析3D打印技术在建筑施工中的应用趋势[J]. 建筑技术开发, 2017, 44 (21): 5- 6
CUI Xiao-fang Analyze application trend of 3D printing technology in construction[J]. Building Information, 2017, 44 (21): 5- 6
doi: 10.3969/j.issn.1001-523X.2017.21.003
[3]   祝云, 陈景, 刘东, 等 混凝土3D打印技术研究与应用现状[J]. 商品混凝土, 2018, (11): 19- 22
ZHU Yun, CHEN Jing, LIU Dong, et al Research and application of concrete 3D printing technology[J]. Ready-Mixed Concrete, 2018, (11): 19- 22
[4]   WENG Y, LI M, TAN M, et al Design 3D printing cementitious materials via Fuller Thompson theory and Marson-Percy model[J]. Construction and Building Materials, 2018, 163: 600- 610
doi: 10.1016/j.conbuildmat.2017.12.112
[5]   MA G W, WANG L, YANG J State-of-the-art of 3D printingtechnology of cementitious material: an emerging technique for construction[J]. Science China Technological Sciences, 2017, 60 (4): 475- 495
[6]   PANDA B, PAUL S C, AHAMED N, et al Measurement of tensile bond strength of 3D printed geopolymer mortar[J]. Measurement, 2018, 113: 108- 116
doi: 10.1016/j.measurement.2017.08.051
[7]   MA G, LI Z, WANG L Printable properties of cementitious material containing copper tailings for extrusion based 3D printing[J]. Construction and Building Materials, 2018, 162: 613- 627
doi: 10.1016/j.conbuildmat.2017.12.051
[8]   孙晓燕, 乐凯笛, 王海龙, 等 挤出形状尺寸对 3D 打印砼力学性能影响研究[J]. 建筑材料学报, 2020, (4): 1- 12
SUN Xiao-yan, LE Kai-di, WANG Hai-long, et al Effects of extruded strip's shapes and dimensions on the mechanical properties of 3D printed concrete[J]. Journal of building materials, 2020, (4): 1- 12
[9]   LE T T, AUSTIN S A, LIM S, et al Mix design and fresh properties for high-performance printing concrete[J]. Materials and Structures, 2012, 45 (8): 1221- 1232
doi: 10.1617/s11527-012-9828-z
[10]   PAUL S C, YI W, PANDA B, et al Fresh and hardened properties of 3D printable cementitious materials for building and construction[J]. Archives of Civil and Mechanical Engineering, 2018, 18 (1): 311- 319
[11]   NERELLA V N, KRAUSE M, NATHER M, et al. Studying printability of fresh concrete for formwork free Concrete on-site 3D Printing technology[C] // 25th Conference on Rheology of Building Materials. Regensburg: [s.n.], 2016: 2-3.
[12]   LE T T, AUSTIN S A, LIM S Hardened properties of high-performance printing concrete[J]. Cement and Concrete Research, 2012, 42 (3): 558- 566
[13]   LIM S, BUSWELL R A, LE T T, et al Developments in construction-scale additive manufacturing processes[J]. Automation in Construction, 2012, 21 (1): 262- 268
[14]   ZHANG Y, ZHANG Y S, LIU G J, et al Fresh properties of a novel 3D printing concrete ink[J]. Construction and Building Materials, 2018, 174: 263- 271
doi: 10.1016/j.conbuildmat.2018.04.115
[15]   蔺喜强, 张涛, 霍亮, 等 水泥基建筑3D打印材料的制备及应用研究[J]. 混凝土, 2016, (6): 141- 144
LIN Xi-qiang, ZHANG Tao, HUO Liang, et al Preparation and application of 3D printing materials in construction[J]. Concrete, 2016, (6): 141- 144
doi: 10.3969/j.issn.1002-3550.2016.06.037
[16]   HAMBACH M, VOLKMER D Properties of 3D-printed fiber-reinforced Portland cement paste[J]. Cement and Concrete Composites, 2017, 79: 62- 70
doi: 10.1016/j.cemconcomp.2017.02.001
[17]   FENG P, MENG X M, CHEN J F, et al Mechanical properties of structures 3D printed with cementitious powders[J]. Construction and Building Materials, 2015, 93: 486- 497
doi: 10.1016/j.conbuildmat.2015.05.132
[18]   汪群. 3D打印混凝土拱桥结构关键技术研究[D]. 杭州: 浙江大学, 2019: 39-45.
WANG Qun. Research on the pivotal technology of 3D printed concrete arch bridge [D]. Hangzhou: Zhejiang University, 2019: 39-45.
[19]   GOSSELIN C, DUBALLET R, ROUX P, et al Large-scale 3D printing of ultra-high performance concrete-new processing route for architects and builders[J]. Materials and Design, 2016, 100: 102- 109
doi: 10.1016/j.matdes.2016.03.097
[20]   MECHTCHERINE V, GRAFE J, NERELLA V N, et al 3D-printed steel reinforcement for digital concrete construction manufacture, mechanical properties and bond behavior[J]. Construction and Building Materials, 2018, 179: 125- 137
doi: 10.1016/j.conbuildmat.2018.05.202
[21]   邓朝莉, 李宗利 孔隙率对混凝土力学性能影响的试验研究[J]. 混凝土, 2016, 321 (7): 41- 44
DENG Chao-li, LI Zong-li Experimental study on mechanical properties of concrete with porosity[J]. Concrete, 2016, 321 (7): 41- 44
doi: 10.3969/j.issn.1002-3550.2016.07.011
[22]   杜修力, 金浏 考虑孔隙及微裂纹影响的混凝土宏观力学特性研究[J]. 工程力学, 2012, 29 (8): 101- 107
DU Xiu-li, JIN Liu Research on the influence of pores and micro-cracks on the macro-mechanical properties of concrete[J]. Engineering Mechanics, 2012, 29 (8): 101- 107
doi: 10.6052/j.issn.1000-4750.2010.10.0742
[23]   范庆华. 2×90 m多拱肋式钢筋混凝土拱桥荷载试验及承载能力评估[D]. 长春: 吉林大学, 2013: 37-39.
FAN Qing-hua. Load test and carrying capacity evaluation of 2×90 meter multi-rib reinforced concrete arch bridge [D]. Changchun: Jilin University, 2013: 37-39.
[24]   王杰 既有混凝土双曲拱桥的裂缝产生分析[J]. 宁夏工程技术, 2014, 13 (3): 258- 261
WANG Jie Analysis of crack producing in existing reinforced concrete double-curved arch bridges[J]. Ningxia Engineering Technology, 2014, 13 (3): 258- 261
doi: 10.3969/j.issn.1671-7244.2014.03.016
[25]   常柱刚, 赵翔宇, 黄立浦 考虑拱圈与拱架联合效应的拱架受力性能研究[J]. 中外公路, 2018, 38 (4): 132- 135
CHANG Zhu-gang, ZHAO Xiang-yu, HUANG Li-pu Study on the mechanical behavior of arch frame considering the joint effect of arch ring and arch frame[J]. Chinese and Foreign Highway, 2018, 38 (4): 132- 135
[1] Lei XIE,Qing-hua LI,Shi-lang XU. Dynamic compressive properties and constitutive model of reactive powder concrete[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 999-1009.
[2] Xiao-hu WANG,Ni-du JIKE,Shan CHEN,Yu-xuan QI,Yu PENG,Qiang ZENG. Water imbibition in concrete in-situ traced by transmission X-ray radiography[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 727-732.
[3] Xin SONG,Wei-jie FAN,Jiang-hong MAO,Wei-liang JIN. Dynamic control effect of chloride in concrete based on multi-level electromigration[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 511-518.
[4] Rui-xin LI,Yi-quan ZOU,Da-wei HU,Hui ZHOU,Chong WANG,Yong-xiang ZHOU,Zu-qi WANG. Spatiotemporal deterioration of concrete under high osmotic pressure and sulfate attack[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 539-547.
[5] Da-peng BAI,Bin ZHANG,Hao-cen HONG,Yang LI,Qing-hua JI,Hua-yong YANG. Biological 3D printer and topography detection of printing model[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 289-298.
[6] Yong YAO,Zhen-jun YANG,Qi ZHANG. Experiment research on improving interface performance of steel fiber and mortal by silane coatings[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 1-9.
[7] Pei GE,Wei HUANG,Meng LI. Experimental study on recycled brick aggregate concrete frame model[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 10-19.
[8] Kang-qiao HUANG,Cheng ZHAO,Wei ZHOU,Xing-hong LIU,Gang MA. Three-dimensional mesoscopic study on freeze-thaw of concrete based on multi-field coupled model[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 62-70.
[9] Wei-lin SU,Xing-Gao LI,Yu XU,Da-long JIN. Numerical simulation of shield tool cutting concrete based on HJC model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1106-1114.
[10] Ya-ting ZHANG,Roesler Jeffery. Cracking of continuously reinforced concrete pavement based on large-scale model test[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1194-1201.
[11] Xing-lang FAN,Sheng-jie GU,Jia-fei JIANG,Xi WU. Computational method of punching-shear capacity of concrete slabs reinforced with FRP bars[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1058-1067.
[12] Jun LUO,Xu-dong SHAO,Jun-hui CAO,Wei FAN,Bi-da PEI. Orthogonal test and calculation method of cracking load of steel-ultra-high performance concrete composite specimen[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 909-920.
[13] Hai-long WANG,Yuan-jian WU,Jia-yan LING,Xiao-yan SUN. Bond degradation between corroded stainless steel bar and concrete[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 843-850.
[14] Wen-tao HU,Dou LIU,Da-xin GENG,Ning WANG,Chang-jie XU,Xing SHANGGUAN,Jie MIN. Internal force and deformation of step-tapered pile under lateral loads[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 739-747.
[15] Jin XIA,Run-li GAN,Yan FANG,Yu-xi ZHAO,Wei-liang JIN. Experimental study on direct shear performance of concrete-concrete interface of prefabricated structure sleeve grouting connection[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 491-498.