Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (1): 62-70    DOI: 10.3785/j.issn.1008-973X.2021.01.008
    
Three-dimensional mesoscopic study on freeze-thaw of concrete based on multi-field coupled model
Kang-qiao HUANG(),Cheng ZHAO,Wei ZHOU*(),Xing-hong LIU,Gang MA
State Key Laboratory of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China
Download: HTML     PDF(2002KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The shape of aggregate was simplified into sphere based on Monte-Carlo theory and the distribution of coarse aggregate particle size. Matlab and Comsol Multiphysics interface were applied for secondary development to generate a three-phase three-dimensional mesoscopic model of concrete that can distinguish aggregate, ITZ and mortar. The improved thermo-hydro-mechanical model was used, and the results accorded well with the experimental results. The coupled model was applied to analyze the behavior evolution law of concrete three-dimensional mesoscale under freeze-thaw conditions. Results show that the first principal stress of the whole sample decreases sharply and the aggregate is in compression while the mortar is in tension when the permeability is high. The overall stress of the sample shows a downward trend when the aggregate volume fraction increases. Motar permeability and aggregate volume fraction have great influence on the freeze-thaw resistance of concrete. The stress of concrete does not change much under different ITZ coefficients of linear thermal expansion, indicating that ITZ coefficient has relatively little influence on the freeze-thaw resistance of concrete.



Key wordsconcrete      freeze-thaw cycle      three-dimensional mesoscopic scale      random aggregate model      multi-field coupled analysis      Comsol Multiphysics     
Received: 19 January 2020      Published: 05 January 2021
CLC:  TV 331  
Corresponding Authors: Wei ZHOU     E-mail: huangkangqiao@whu.edu.cn;zw_mxx@163.com
Cite this article:

Kang-qiao HUANG,Cheng ZHAO,Wei ZHOU,Xing-hong LIU,Gang MA. Three-dimensional mesoscopic study on freeze-thaw of concrete based on multi-field coupled model. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 62-70.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.01.008     OR     http://www.zjujournals.com/eng/Y2021/V55/I1/62


基于多场耦合模型的混凝土冻融三维细观研究

基于蒙特-卡洛理论和工程粗骨料粒径分布情况,将骨料形状简化为球形,应用Matlab与Comsol Multiphysics接口进行二次开发,以生成区分骨料、界面过渡区(ITZ)和砂浆的混凝土三相三维细观模型. 采用改进的热-水-力耦合模型,将耦合模型与物理试验进行验证分析,结果吻合较好. 将该耦合模型应用于研究冻融作用下混凝土三维细观尺度的性能演化规律. 研究结果表明,当渗透率较高时,试件整体第一主应力急剧减小,且出现骨料受压而砂浆受拉的情况;当骨料体积分数增大时,试件应力整体呈现下降趋势. 砂浆渗透率和骨料体积分数对混凝土抗冻融性能的影响较大. 不同的ITZ线膨胀系数下混凝土应力变化不大,说明ITZ线膨胀系数对混凝土抗冻融性能的影响相对较小.


关键词: 混凝土,  冻融循环,  三维细观尺度,  随机骨料模型,  多场耦合分析,  Comsol Multiphysics 
Fig.1 Three-dimensional mesoscopic model of concrete with different aggregate volume fractions
组分 ρ /(kg·m?3) E /GPa K/GPa μ n b D0 /(10?21 m2) λ /(W·m?1·K?1) c /(J·kg?1·K?1) αl /K?1 $\overline {{\alpha _{\rm{0}}}} $ /K?1
砂浆 2160 20.2 11.2 0.2 0.1482 0.382 3.675 0.93 840 12.9×10?6 38.8×10?6
ITZ 2160 17.17 9.5 0.2 0.2223 0.382 11.025 0.93 840 12.9×10?6 38.8×10?6
骨料 2600 53.9 ? 0.25 ? ? ? 2.66 830 5×10?6 ?
1000 ? 2 ? ? ? ? 0.55 4220 (?9.2+2.07T)×10?5 ?
917 ? 8 ? ? ? ? 2.20 2110 1.54×10?4 ?
Tab.1 Parameters used in mesoscopic numerical analysis for coupled model
参数 数值
K0 /GPa 18.12
η /(Pa·s) 1.38×10?6exp (2590/T)
κ /(N·m) (36+0.25T)×10?3
Tab.2 Parameters used in mesoscopic simulation
Fig.2 Boundary temperature of model
Fig.3 Comparison between results yielded by numerical simulation and experiment data of freezing process
Fig.4 First principal stress distribution of different mortar and ITZ permeability samples (mw/mc=0.4, t=10 h)
Fig.5 First principal stress distribution of different mortar and ITZ permeability samples (mw/mc=0.4, t=25 h)
Fig.6 Pore water liquid pressure course curve of samples with different permeability of mortar and ITZ
Fig.7 Crystallization pressure course curve of samples with different permeability of mortar and ITZ
Fig.8 First principal stress course curve of samples with different permeability of mortar and ITZ
Fig.9 First principal stress distribution of samples with different ITZ coefficients of linear thermal expansion (mw/mc=0.4, t=15 h)
Fig.10 First principal stress distribution of samples with different ITZ coefficients of linear thermal expansion (mw/mc=0.4, t=50 h)
Fig.11 First principal stress course curve of samples with different ITZ coefficients of linear thermal expansion
Fig.12 Isothermal surface distribution of samples with different aggregate volume fractions (mw/mc=0.4, t=5 h)
Fig.13 Isothermal surface distribution of samples with different aggregate volume fractions (mw/mc=0.4, t=40 h)
Fig.14 First principal stress distribution of samples with different aggregate volume fractions (mw/mc=0.4, t=5 h)
Fig.15 First principal stress distribution of samples with different aggregate volume fractions (mw/mc=0.4, t=40 h)
Fig.16 First principal stress course curve of samples with different aggregate volume fractions
Fig.17 Temperature course curve of samples with different aggregate volume fractions
[1]   段安. 受冻融混凝土本构关系研究和冻融过程数值模拟[D]. 北京: 清华大学, 2009.
DUAN An. Research on constitutive relationship of frozen-thawed concrete and mathematical modeling of freeze-thaw process [D]. Beijing: Tsinghua University, 2009.
[2]   曾强, 李克非 冻融情况下降温速率对水泥基材料变形和损伤的影响[J]. 清华大学学报: 自然科学版, 2008, 48 (9): 1390- 1394
ZENG Qiang, LI Ke-fei Influence of freezing rate on the cryo-deformation and cryo-damage of cement-based materials during freeze-thaw cycles[J]. Journal of Tsinghua University: Science and Technology, 2008, 48 (9): 1390- 1394
[3]   ZHOU W, ZHAO C, LIU X, et al Mesoscopic simulation of thermo-mechanical behaviors in concrete under frost action[J]. Construction and Building Materials, 2017, 157: 117- 131
doi: 10.1016/j.conbuildmat.2017.09.009
[4]   POWERS T C A working hypothesis for further studies of frost resistance of concrete[J]. Journal of the American Concrete Institute, 1945, 41 (4): 245- 272
[5]   POWERS T C. The air requirement of frost-resistance concrete [C]// Proceedings of Highway Research Board. Washington, D. C.: Highway Research Board, 1949: 184-211.
[6]   POWERS T C, HELMUTH R A. Theory of volume changes in hardened Portland-Cement paste during freezing [C]// Proceedings of the Highway Research Board Annual Meeting. Washington, D. C. : Highway Research Board, 1953: 285-297.
[7]   POWERS T C. Freezing effect in concrete [C]// Durability of Concrete. Detroit: ACI, 1975: 1-11.
[8]   BA?ANT Z P, CHERN J C, ROSENBERG A M, et al Mathematical model for freeze-thaw durability of concrete[J]. Journal of the American Ceramic Society, 1988, 71 (9): 776- 783
doi: 10.1111/j.1151-2916.1988.tb06413.x
[9]   ZUBER B, MARCHAND J Modeling the deterioration of hydrated cement systems exposed to frost action: Part 1: description of the mathematical model[J]. Cement and Concrete Research, 2000, 30 (12): 1929- 1939
doi: 10.1016/S0008-8846(00)00405-1
[10]   ZUBER B, MARCHAND J Predicting the volume instability of hydrated cement systems upon freezing using poro-mechanics and local phase equilibria[J]. Materials and Structures, 2004, 37 (4): 257- 270
doi: 10.1007/BF02480634
[11]   DUAN A, CHEN J, JIN W Numerical simulation of the freezing process of concrete[J]. Journal of Materials in Civil Engineering, 2013, 25 (9): 1317- 1325
doi: 10.1061/(ASCE)MT.1943-5533.0000655
[12]   ZHOU W, FENG C, LIU X, et al A macro–meso chemo-physical analysis of early-age concrete based on a fixed hydration model[J]. Magazine of Concrete Research, 2016, 68 (19): 981- 994
doi: 10.1680/jmacr.15.00321
[13]   糜凯华, 武亮, 吕晓波, 等 三维球形随机骨料混凝土细观数值模拟[J]. 水电能源科学, 2014, 32 (11): 124- 128
MEI Kai-hua, WU Liang, LV Xiao-bo, et al Numerical simulation of mesostructure for concrete with 3D spherical random aggregate particles[J]. Water Resources and Power, 2014, 32 (11): 124- 128
[14]   华东水利学院. 水工设计手册(2): 地质水文建筑材料[M]. 北京: 水利电力出版社, 1984.
[15]   李运成, 马怀发, 陈厚群, 等 混凝土随机凸多面体骨料模型生成及细观有限元剖分[J]. 水利学报, 2006, 37 (5): 588- 592
LI Yun-cheng, MA Huai-fa, CHEN Hou-qun, et al Approach to generation of random convex polyhedral aggregate model and plotting for concrete meso-mechanics[J]. Journal of Hydraulic Engineering, 2006, 37 (5): 588- 592
doi: 10.3321/j.issn:0559-9350.2006.05.012
[16]   欧阳利军, 安子文, 杨伟涛, 等 混凝土界面过渡区(ITZ)微观特性研究进展[J]. 混凝土与水泥制品, 2018, (2): 7- 12
OUYANG Li-jun, AN Zi-wen, YANG Wei-tao, et al Research progress on microstructure characteristic of interface transition zone of concrete[J]. China Concrete and Cement Products, 2018, (2): 7- 12
doi: 10.3969/j.issn.1000-4637.2018.02.002
[17]   MATALA S. Effects of carbonation on the pore structure of granulated blast furnace slag concrete [D]. Helsinki: Helsinki University of Technology, 1995.
[18]   KONIORCZYK M, GAWIN D, SCHREFLER B A Modeling evolution of frost damage in fully saturated porous materials exposed to variable hygrothermal conditions[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 297: 38- 61
doi: 10.1016/j.cma.2015.08.015
[19]   冀晓东, 宋玉普, 刘建 混凝土冻融损伤本构模型研究[J]. 计算力学学报, 2011, 28 (3): 461- 467
JI Xiao-dong, SONG Yu-pu, LIU Jian Study on frost damage constitutive model of concrete[J]. Chinese Journal of Computational Mechanics, 2011, 28 (3): 461- 467
doi: 10.7511/jslx201103026
[20]   PICANDET V, KHELIDJ A, BASTIAN G Effect of axial compressive damage on gas permeability of ordinary and high performance concrete[J]. Cement and Concrete Research, 2001, 31 (11): 1525- 1532
[21]   STéPHANE M, SELLIER A, PERRIN B Numerical analysis of frost effects in porous media. benefits and limits of the finite element poroelasticity formulation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36 (4): 438- 458
doi: 10.1002/nag.1014
[22]   ZHOU W, TANG L, LIU X, et al Mesoscopic simulation of the dynamic tensile behaviour of concrete based on a rate-dependent cohesive model[J]. International Journal of Impact Engineering, 2016, 95 (9): 165- 175
[1] Lei XIE,Qing-hua LI,Shi-lang XU. Dynamic compressive properties and constitutive model of reactive powder concrete[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 999-1009.
[2] Xiao-hu WANG,Ni-du JIKE,Shan CHEN,Yu-xuan QI,Yu PENG,Qiang ZENG. Water imbibition in concrete in-situ traced by transmission X-ray radiography[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 727-732.
[3] Xin SONG,Wei-jie FAN,Jiang-hong MAO,Wei-liang JIN. Dynamic control effect of chloride in concrete based on multi-level electromigration[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 511-518.
[4] Rui-xin LI,Yi-quan ZOU,Da-wei HU,Hui ZHOU,Chong WANG,Yong-xiang ZHOU,Zu-qi WANG. Spatiotemporal deterioration of concrete under high osmotic pressure and sulfate attack[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 539-547.
[5] Yong YAO,Zhen-jun YANG,Qi ZHANG. Experiment research on improving interface performance of steel fiber and mortal by silane coatings[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 1-9.
[6] Pei GE,Wei HUANG,Meng LI. Experimental study on recycled brick aggregate concrete frame model[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 10-19.
[7] Wei-lin SU,Xing-Gao LI,Yu XU,Da-long JIN. Numerical simulation of shield tool cutting concrete based on HJC model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1106-1114.
[8] Ya-ting ZHANG,Roesler Jeffery. Cracking of continuously reinforced concrete pavement based on large-scale model test[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1194-1201.
[9] Xing-lang FAN,Sheng-jie GU,Jia-fei JIANG,Xi WU. Computational method of punching-shear capacity of concrete slabs reinforced with FRP bars[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1058-1067.
[10] Jun LUO,Xu-dong SHAO,Jun-hui CAO,Wei FAN,Bi-da PEI. Orthogonal test and calculation method of cracking load of steel-ultra-high performance concrete composite specimen[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 909-920.
[11] Hai-long WANG,Yuan-jian WU,Jia-yan LING,Xiao-yan SUN. Bond degradation between corroded stainless steel bar and concrete[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 843-850.
[12] Jin XIA,Run-li GAN,Yan FANG,Yu-xi ZHAO,Wei-liang JIN. Experimental study on direct shear performance of concrete-concrete interface of prefabricated structure sleeve grouting connection[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 491-498.
[13] Xiao-yan SUN,Gui TANG,Hai-long WANG,Qun WANG,Zhi-cheng ZHANG. Effect of 3D printing path on mechanical properties of arch concrete bridge[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2085-2091.
[14] Jin-feng WANG,Ai-ping ZHANG,Wen-hao WANG. Effects of stud height on shear behavior of stud connectors[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2076-2084.
[15] Yong-gui WANG,Shuai-peng LI,Peter HUGHES,Yu-hui FAN,Xiang-yu GAO. Elevated temperatures performance of modified recycled aggregate concrete[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2047-2057.