Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (10): 1894-1902    DOI: 10.3785/j.issn.1008-973X.2021.10.011
    
Critical loads of axially compressed GFRP round tubes considering shear deformations
Bing FENG1(),Yong CHEN2,*(),Xu CUI2,Guo-hui SHEN2,Hai-wei XU2
1. Shaoxing Daming Electric Power Design Institute Limited Company, Shaoxing 312099, China
2. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(1216KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The critical load of the members was formulated via Engesser’s shear deformation theory by considering the effects of shear deformation on the elastic buckling load of glass fiber reinforced polymer (GFRP) members. The shear deformation and the initial bending were considered. The anisotropic behavior of the material was considered in the computations of the shear coefficient and the compression strength in application of the equation to the GFRP round tubes. Compressive tests of four specimens of GFRP round tubes with different slenderness were conducted. The experimental results show that the compression failure in meridional fiber and the tension failure in circumferential matrix should be synthetically considered in estimating the sectional compression strength of the GFRP round tubes. The theoretical results obtained via the formulas presented herein for computing the critical load accorded well with the experimental results.



Key wordsglass fiber reinforced polymer (GFRP)      critical load      shear deformation     
Received: 01 December 2020      Published: 27 October 2021
CLC:  TU 311  
  TU 381  
Fund:  国家自然科学基金资助项目(51878607,51838012);国网浙江省电力公司集体企业科技资助项目(SX-JT-KJ-2018-03)
Corresponding Authors: Yong CHEN     E-mail: zepdifb@163.com;cecheny@zju.edu.cn
Cite this article:

Bing FENG,Yong CHEN,Xu CUI,Guo-hui SHEN,Hai-wei XU. Critical loads of axially compressed GFRP round tubes considering shear deformations. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1894-1902.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.10.011     OR     https://www.zjujournals.com/eng/Y2021/V55/I10/1894


考虑剪切变形的轴心受压GFRP圆管临界荷载

为了考虑剪切变形对玻璃纤维增强复合材料(GFRP)构件屈曲荷载的影响,利用Engesser剪切变形理论,推导考虑剪切变形和初弯曲的临界荷载. 应用于GFRP圆管时,考虑材料各向异性特征对剪切系数及强度的影响. 对4根具有不同长细比的GFRP圆管试件进行轴压试验. 结果表明,GFRP圆管在截面强度估算时应综合考虑轴向纤维压缩破坏和环向基体拉伸破坏. 所推导的临界荷载计算式的结果和试验结果吻合良好.


关键词: 玻璃纤维增强复合材料(GFRP),  临界荷载,  剪切变形 
Fig.1 Internal forces, shear and flexural deformations of member under axial compression
试件 D1 /mm D2 /mm T /mm L /mm Ls /mm Ts /mm Lt /mm
Z-1 60 68 4 1 295.5 50 4 1 100
Z-2 60 68 4 1 943.2 50 4 1 700
Z-3 60 68 4 2 591.0 50 4 2 400
Z-4 60 68 4 3 238.7 50 4 3 000
Tab.1 Geometrical dimension of specimens
Fig.2 Experimental setup for compressive tests and layout of measuring points
材料参数 数值
E1c/MPa 41 495
E1t/MPa 49 760
E2c/MPa 9 230
E2t/MPa 10 590
G12/MPa 3 220
υ21c 0.24
Xt/MPa 964.25
Yt/MPa 23.47
Xc/MPa 617.16
Yc/MPa 103.83
Tab.2 Results of material test
Fig.3 Failure of specimens
Fig.4 Curves of loading versus relative longitudinal displacement
Fig.5 Variation of stress with loading
Fig.6 Shear coefficient versus diameter to thickness ratio
试件 l0 /mm Pcr,E /kN Pcr,Eng /kN Pu /kN λn 理论值 试验值 误差/%
Pcr /kN χ Pcr /kN χ
Z-1 1195.5 473.8 347.7 290.0 0.913 208.1 0.717 191.0 0.659 8.9
Z-2 1843.2 199.3 173.0 290.0 1.30 135.8 0.468 140.0 0.483 ?3.0
Z-3 2491.0 109.1 100.7 290.0 1.70 86.6 0.299 95.0 0.328 ?8.8
Z-4 3138.7 68.7 65.3 290.0 2.11 58.5 0.202 61.0 0.210 ?4.2
Tab.3 Theoretical and experimental results of buckling reduction factor
Fig.7 Theoretical and experimental results of buckling reduction factor
[1]   高湛, 吴必华, 李华 荆门换流站接地极工程玻璃钢构架真型试验[J]. 电力建设, 2010, 31 (12): 30- 32
GAO Zhan, WU Bi-hua, LI hua Full scale test of glass fiber reinforced plastic gantry for the earth electrode of Jingmen converter station[J]. Electric Power Construction, 2010, 31 (12): 30- 32
doi: 10.3969/j.issn.1000-7229.2010.12.008
[2]   柳欢欢, 刘明慧, 于鑫 复合材料输电杆塔设计方法讨论[J]. 玻璃钢/复合材料, 2013, (Supple.2): 48- 52
LIU Huan-huan, LIU Ming-hui, YU Xin The discussion of designing fiber reinforce plastic transmission tower[J]. Fiber Reinforced Plastics/Composites, 2013, (Supple.2): 48- 52
[3]   王虎长, 胡建民, 赵雪灵 玻璃钢复合材料轴压构杆稳定性分析[J]. 电力建设, 2011, 32 (9): 85- 89
WANG Hu-chang, HU Jian-min, ZHAO Xue-ling Stability analysis of axial compression component of FRP[J]. Electric Power Construction, 2011, 32 (9): 85- 89
doi: 10.3969/j.issn.1000-7229.2011.09.021
[4]   叶列平, 冯鹏 FRP在工程结构中的应用与发展[J]. 土木工程学报, 2006, 39 (3): 24- 36
YE Lie-ping, FENG Peng Applications and development of fiber-reinforced polymer in engineering structures[J]. China Civil Engineering Journal, 2006, 39 (3): 24- 36
doi: 10.3321/j.issn:1000-131X.2006.03.004
[5]   李喜来, 吴庆华, 吴海洋, 等 复合材料杆塔压杆稳定计算方法研究[J]. 特种结构, 2010, 27 (6): 1- 5
LI Xi-lai, WU Qing-hua, WU Hai-yang, et al Study on the stability calculation method of compressive member in composites pole tower[J]. Special Structures, 2010, 27 (6): 1- 5
doi: 10.3969/j.issn.1001-3598.2010.06.001
[6]   DAVIS J G. Compressive instability and strength of uniaxial filament-reinforced epoxy tubes [R]. Washington, D. C., US: NASA, 1970.
[7]   ZUREICK A, SCOTT D Short-term behavior and design of fiber-reinforced polymeric slender members under axial compression[J]. Journal of Composite for Construction-ASCE, 1997, 1 (4): 140- 149
doi: 10.1061/(ASCE)1090-0268(1997)1:4(140)
[8]   GOODMAN J W, GLIKSMAN J A. Structural evaluation of long boron composite columns [C]// Composite Materials: Testing and Design. West Conshohocken, PA, US: ASTM, 1969: 460-469.
[9]   PUENTE I, INSAUSTI A, AZKUNE M Buckling of GFRP columns: an empirical approach to design[J]. Journal of Composites for Construction-ASCE, 2006, 10 (6): 529- 537
doi: 10.1061/(ASCE)1090-0268(2006)10:6(529)
[10]   ZHAN Y, WU G Determination of critical loads for global buckling of axially loaded pultruded fiber-reinforced polymer members with doubly symmetric cross sections[J]. Advances in Structural Engineering, 2018, 21 (12): 1911- 1922
doi: 10.1177/1369433218759572
[11]   SZALAI J, PAPP F On the theoretical background of the generalization of Ayrton-Perry type resistance formulas[J]. Journal of Constructional Steel Research, 2010, (66): 670- 679
[12]   SZALAI J Complete generalization of the Ayrton-Perry formula for beam-column buckling problems[J]. Engineering Structures, 2017, (153): 205- 223
[13]   ZHAN Y, WU G, HARRIES K A Determination of critical load for global flexural buckling in concentrically loaded pultruded FRP structural struts[J]. Engineering Structures, 2018, (158): 1- 12
[14]   钱鹏, 冯鹏, 叶列平 GFRP管轴心受压性能的试验研究[J]. 天津大学学报, 2007, 40 (1): 19- 23
QIAN Peng, FENG Peng, YE Lie-ping Experimental study on GFRP pipes under axial compression[J]. Journal of Tianjin University, 2007, 40 (1): 19- 23
[15]   侯炜, 张兴虎, 冯海潮 GFRP轴心受压构件的稳定性能[J]. 建筑材料学报, 2010, 13 (4): 441- 445
HOU Wei, ZHANG Xing-hu, FENG Hai-chao Stability of axial compression members of glass fiber-reinforced plastic (GFRP)[J]. Journal of Building Materials, 2010, 13 (4): 441- 445
doi: 10.3969/j.issn.1007-9629.2010.04.005
[16]   BARBERO E, TOMBLIN J A phenomenological design equation for FRP columns with interaction between local and global buckling[J]. Thin-Walled Structures, 1994, 18 (2): 117- 131
doi: 10.1016/0263-8231(94)90013-2
[17]   CARDOSO D C T, HARRIES K A, BATISTA E D M Compressive strength equation for GFRP square tube columns[J]. Composites Part B: Engineering, 2014, 59: 1- 11
[18]   BLAAUWENDRAAD J Timoshenko beam-column buckling. does Dario stand the test?[J]. Engineering Structures, 2008, 30 (11): 3389- 3393
doi: 10.1016/j.engstruct.2008.09.010
[19]   童根树. 钢结构的平面内稳定[M]. 北京: 中国建筑工业出版社, 2015.
[20]   定向纤维增强聚合物基复合材料拉伸性能试验方法: GB/T 3354—2014 [S]. 北京: 中国标准出版社, 2014.
[21]   单向纤维增强塑料平板压缩性能试验方法: GB/T 3856—2005 [S]. 北京: 中国标准出版社, 2005.
[22]   TSAI S W, WU E M A general theory of strength for anisotropic materials[J]. Journal of Composite Materials, 1971, 5 (1): 58- 80
doi: 10.1177/002199837100500106
[1] Xue-you QUAN,Jia-di LIU,Ji REN,Bao LIU,Lian-jie LIU. Experimental approach for decomposition of deflection of prismatic beams into flexural and shear deformations[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1100-1107.
[2] Li WANG,Shi-zhong LIU,Wei LU,Si-sheng NIU,Xin-lei SHI. Temperature effect of new-type composite box girder with corrugated steel webs[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 675-683.
[3] WANG Zhen,WANG Jing quan,QI Jia nan. Computing model for deformation capacity of concrete filled steel tube reinforced concrete bridge columns[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 864-870.
[4] WEI Yi-min, YANG Shi-xi, GAN Chun-biao.
Experiment for propagation characteristics of longitudinal wave in multi-step rod with variable cross-section
[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(6): 1146-1153.
[5] LIANG Xiao-tian, YUAN Xing-fei. Performance analysis of buckling in compressive strut supported by prestressed cables[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(3): 505-510.
[6] TONG Gen shu, YANG Zhang, ZHANG Lei. Effective rigidity of one side stiffeners in Steel Shear Walls[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2151-2158.
[7] HE Yu-liang, XIANG Yi-qiang, LI Shao-jun, LIU Li-si. Analysis on shear-lag effect of composite girders based on different parabolic warping displacement function[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(11): 1933-1940.